[Keyboard] Planck: Layout Macro Refactor (#4402)
* Planck: layout macro refactor Unified layout macro names across AVR and ARM boards. Currently certain layout macros are specific to either AVR or ARM when used in the QMK Configurator. If an AVR-specific macro is used for a Planck rev. 6, or an ARM-specific macro on a rev. 5 or earlier, the user receives a compile error. * Update keyboards/planck/planck.h per @drashna Changed KC_LAYOUT_ortho_4x12 alias to LAYOUT_kc_ortho_4x12. Co-Authored-By: noroadsleft <18669334+noroadsleft@users.noreply.github.com> * Add KC_KEYMAP alias for LAYOUT_kc macro per @drashna Update keyboards/planck/planck.h Co-Authored-By: noroadsleft <18669334+noroadsleft@users.noreply.github.com> * Fix LAYOUT_planck_1x2uC macro for Planck rev6 Thanks to drashna for testing. * Fix inline comment regarding revisions * Add specific info.json file for Planck rev6master
parent
29824f3cf7
commit
f4840139a2
|
@ -9,8 +9,9 @@
|
||||||
#include "ez.h"
|
#include "ez.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef __AVR__
|
#ifdef __AVR__ // Planck revs. 1-5
|
||||||
#define LAYOUT_planck_mit( \
|
|
||||||
|
#define LAYOUT_planck_1x2uC( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
|
@ -23,7 +24,7 @@
|
||||||
{ k30, k31, k32, k33, k34, k35, k35, k37, k38, k39, k3a, k3b } \
|
{ k30, k31, k32, k33, k34, k35, k35, k37, k38, k39, k3a, k3b } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAYOUT_planck_grid( \
|
#define LAYOUT_ortho_4x12( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
|
@ -36,31 +37,13 @@
|
||||||
{ k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b } \
|
{ k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b } \
|
||||||
}
|
}
|
||||||
|
|
||||||
// Used to create a keymap using only KC_ prefixed keys
|
|
||||||
#define KC_KEYMAP( \
|
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
|
||||||
k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b \
|
|
||||||
) \
|
|
||||||
LAYOUT_planck_grid( \
|
|
||||||
KC_##k00, KC_##k01, KC_##k02, KC_##k03, KC_##k04, KC_##k05, KC_##k06, KC_##k07, KC_##k08, KC_##k09, KC_##k0a, KC_##k0b, \
|
|
||||||
KC_##k10, KC_##k11, KC_##k12, KC_##k13, KC_##k14, KC_##k15, KC_##k16, KC_##k17, KC_##k18, KC_##k19, KC_##k1a, KC_##k1b, \
|
|
||||||
KC_##k20, KC_##k21, KC_##k22, KC_##k23, KC_##k24, KC_##k25, KC_##k26, KC_##k27, KC_##k28, KC_##k29, KC_##k2a, KC_##k2b, \
|
|
||||||
KC_##k30, KC_##k31, KC_##k32, KC_##k33, KC_##k34, KC_##k35, KC_##k36, KC_##k37, KC_##k38, KC_##k39, KC_##k3a, KC_##k3b \
|
|
||||||
)
|
|
||||||
|
|
||||||
#define KEYMAP LAYOUT_planck_grid
|
|
||||||
#define LAYOUT_ortho_4x12 LAYOUT_planck_grid
|
|
||||||
#define KC_LAYOUT_ortho_4x12 KC_KEYMAP
|
|
||||||
|
|
||||||
#elif KEYBOARD_planck_rev6
|
#elif KEYBOARD_planck_rev6
|
||||||
|
|
||||||
#define LAYOUT_planck_1x2uC( \
|
#define LAYOUT_planck_1x2uC( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
k30, k31, k32, k33, k34, k35, k37, k38, k39, k3a, k3b \
|
k30, k31, k32, k33, k34, k36, k37, k38, k39, k3a, k3b \
|
||||||
) \
|
) \
|
||||||
{ \
|
{ \
|
||||||
{ k00, k01, k02, k03, k04, k05 }, \
|
{ k00, k01, k02, k03, k04, k05 }, \
|
||||||
|
@ -70,7 +53,7 @@
|
||||||
{ k06, k07, k08, k09, k0a, k0b }, \
|
{ k06, k07, k08, k09, k0a, k0b }, \
|
||||||
{ k16, k17, k18, k19, k1a, k1b }, \
|
{ k16, k17, k18, k19, k1a, k1b }, \
|
||||||
{ k26, k27, k28, k29, k2a, k2b }, \
|
{ k26, k27, k28, k29, k2a, k2b }, \
|
||||||
{ k36, k37, k38, k33, k34, k35 } \
|
{ k36, k37, k38, k33, k34, KC_NO } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAYOUT_planck_1x2uR( \
|
#define LAYOUT_planck_1x2uR( \
|
||||||
|
@ -87,14 +70,14 @@
|
||||||
{ k06, k07, k08, k09, k0a, k0b }, \
|
{ k06, k07, k08, k09, k0a, k0b }, \
|
||||||
{ k16, k17, k18, k19, k1a, k1b }, \
|
{ k16, k17, k18, k19, k1a, k1b }, \
|
||||||
{ k26, k27, k28, k29, k2a, k2b }, \
|
{ k26, k27, k28, k29, k2a, k2b }, \
|
||||||
{ k36, k37, k38, k33, k34, k35 } \
|
{ KC_NO, k37, k38, k33, k34, k35 } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAYOUT_planck_1x2uL( \
|
#define LAYOUT_planck_1x2uL( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
k30, k31, k32, k33, k34, k36, k37, k38, k39, k3a, k3b \
|
k30, k31, k32, k33, k35, k36, k37, k38, k39, k3a, k3b \
|
||||||
) \
|
) \
|
||||||
{ \
|
{ \
|
||||||
{ k00, k01, k02, k03, k04, k05 }, \
|
{ k00, k01, k02, k03, k04, k05 }, \
|
||||||
|
@ -104,14 +87,14 @@
|
||||||
{ k06, k07, k08, k09, k0a, k0b }, \
|
{ k06, k07, k08, k09, k0a, k0b }, \
|
||||||
{ k16, k17, k18, k19, k1a, k1b }, \
|
{ k16, k17, k18, k19, k1a, k1b }, \
|
||||||
{ k26, k27, k28, k29, k2a, k2b }, \
|
{ k26, k27, k28, k29, k2a, k2b }, \
|
||||||
{ k36, k37, k38, k33, k34, k35 } \
|
{ k36, k37, k38, k33, KC_NO, k35 } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAYOUT_planck_2x2u( \
|
#define LAYOUT_planck_2x2u( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
k30, k31, k32, k33, k34, k36, k38, k39, k3a, k3b \
|
k30, k31, k32, k33, k35, k37, k38, k39, k3a, k3b \
|
||||||
) \
|
) \
|
||||||
{ \
|
{ \
|
||||||
{ k00, k01, k02, k03, k04, k05 }, \
|
{ k00, k01, k02, k03, k04, k05 }, \
|
||||||
|
@ -121,10 +104,10 @@
|
||||||
{ k06, k07, k08, k09, k0a, k0b }, \
|
{ k06, k07, k08, k09, k0a, k0b }, \
|
||||||
{ k16, k17, k18, k19, k1a, k1b }, \
|
{ k16, k17, k18, k19, k1a, k1b }, \
|
||||||
{ k26, k27, k28, k29, k2a, k2b }, \
|
{ k26, k27, k28, k29, k2a, k2b }, \
|
||||||
{ k36, k37, k38, k33, k34, k35 } \
|
{ KC_NO, k37, k38, k33, KC_NO, k35 } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LAYOUT_planck_grid( \
|
#define LAYOUT_ortho_4x12( \
|
||||||
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
|
@ -141,10 +124,28 @@
|
||||||
{ k36, k37, k38, k33, k34, k35 } \
|
{ k36, k37, k38, k33, k34, k35 } \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define KEYMAP LAYOUT_planck_grid
|
|
||||||
#define LAYOUT_ortho_4x12 LAYOUT_planck_grid
|
|
||||||
#define KC_LAYOUT_ortho_4x12 KC_KEYMAP
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// all Planck keyboards
|
||||||
|
|
||||||
|
// Used to create a keymap using only KC_ prefixed keys
|
||||||
|
#define LAYOUT_kc( \
|
||||||
|
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
|
||||||
|
k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
|
||||||
|
k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
|
||||||
|
k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b \
|
||||||
|
) \
|
||||||
|
LAYOUT_ortho_4x12( \
|
||||||
|
KC_##k00, KC_##k01, KC_##k02, KC_##k03, KC_##k04, KC_##k05, KC_##k06, KC_##k07, KC_##k08, KC_##k09, KC_##k0a, KC_##k0b, \
|
||||||
|
KC_##k10, KC_##k11, KC_##k12, KC_##k13, KC_##k14, KC_##k15, KC_##k16, KC_##k17, KC_##k18, KC_##k19, KC_##k1a, KC_##k1b, \
|
||||||
|
KC_##k20, KC_##k21, KC_##k22, KC_##k23, KC_##k24, KC_##k25, KC_##k26, KC_##k27, KC_##k28, KC_##k29, KC_##k2a, KC_##k2b, \
|
||||||
|
KC_##k30, KC_##k31, KC_##k32, KC_##k33, KC_##k34, KC_##k35, KC_##k36, KC_##k37, KC_##k38, KC_##k39, KC_##k3a, KC_##k3b \
|
||||||
|
)
|
||||||
|
|
||||||
|
#define KEYMAP LAYOUT_ortho_4x12
|
||||||
|
#define LAYOUT_planck_mit LAYOUT_planck_1x2uC
|
||||||
|
#define LAYOUT_planck_grid LAYOUT_ortho_4x12
|
||||||
|
#define LAYOUT_kc_ortho_4x12 LAYOUT_kc
|
||||||
|
#define KC_KEYMAP LAYOUT_kc
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -0,0 +1,270 @@
|
||||||
|
{
|
||||||
|
"keyboard_name": "Planck",
|
||||||
|
"keyboard_folder": "planck",
|
||||||
|
"url": "https://olkb.com/planck",
|
||||||
|
"maintainer": "jackhumbert",
|
||||||
|
"width": 12,
|
||||||
|
"height": 4,
|
||||||
|
"layouts": {
|
||||||
|
"LAYOUT_ortho_4x12": {
|
||||||
|
"key_count": 48,
|
||||||
|
"layout": [
|
||||||
|
{ "x": 0, "y": 0 },
|
||||||
|
{ "x": 1, "y": 0 },
|
||||||
|
{ "x": 2, "y": 0 },
|
||||||
|
{ "x": 3, "y": 0 },
|
||||||
|
{ "x": 4, "y": 0 },
|
||||||
|
{ "x": 5, "y": 0 },
|
||||||
|
{ "x": 6, "y": 0 },
|
||||||
|
{ "x": 7, "y": 0 },
|
||||||
|
{ "x": 8, "y": 0 },
|
||||||
|
{ "x": 9, "y": 0 },
|
||||||
|
{ "x": 10, "y": 0 },
|
||||||
|
{ "x": 11, "y": 0 },
|
||||||
|
{ "x": 0, "y": 1 },
|
||||||
|
{ "x": 1, "y": 1 },
|
||||||
|
{ "x": 2, "y": 1 },
|
||||||
|
{ "x": 3, "y": 1 },
|
||||||
|
{ "x": 4, "y": 1 },
|
||||||
|
{ "x": 5, "y": 1 },
|
||||||
|
{ "x": 6, "y": 1 },
|
||||||
|
{ "x": 7, "y": 1 },
|
||||||
|
{ "x": 8, "y": 1 },
|
||||||
|
{ "x": 9, "y": 1 },
|
||||||
|
{ "x": 10, "y": 1 },
|
||||||
|
{ "x": 11, "y": 1 },
|
||||||
|
{ "x": 0, "y": 2 },
|
||||||
|
{ "x": 1, "y": 2 },
|
||||||
|
{ "x": 2, "y": 2 },
|
||||||
|
{ "x": 3, "y": 2 },
|
||||||
|
{ "x": 4, "y": 2 },
|
||||||
|
{ "x": 5, "y": 2 },
|
||||||
|
{ "x": 6, "y": 2 },
|
||||||
|
{ "x": 7, "y": 2 },
|
||||||
|
{ "x": 8, "y": 2 },
|
||||||
|
{ "x": 9, "y": 2 },
|
||||||
|
{ "x": 10, "y": 2 },
|
||||||
|
{ "x": 11, "y": 2 },
|
||||||
|
{ "x": 0, "y": 3 },
|
||||||
|
{ "x": 1, "y": 3 },
|
||||||
|
{ "x": 2, "y": 3 },
|
||||||
|
{ "x": 3, "y": 3 },
|
||||||
|
{ "x": 4, "y": 3 },
|
||||||
|
{ "x": 5, "y": 3 },
|
||||||
|
{ "x": 6, "y": 3 },
|
||||||
|
{ "x": 7, "y": 3 },
|
||||||
|
{ "x": 8, "y": 3 },
|
||||||
|
{ "x": 9, "y": 3 },
|
||||||
|
{ "x": 10, "y": 3 },
|
||||||
|
{ "x": 11, "y": 3 }
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"LAYOUT_planck_1x2uC": {
|
||||||
|
"key_count": 47,
|
||||||
|
"layout": [
|
||||||
|
{ "x": 0, "y": 0 },
|
||||||
|
{ "x": 1, "y": 0 },
|
||||||
|
{ "x": 2, "y": 0 },
|
||||||
|
{ "x": 3, "y": 0 },
|
||||||
|
{ "x": 4, "y": 0 },
|
||||||
|
{ "x": 5, "y": 0 },
|
||||||
|
{ "x": 6, "y": 0 },
|
||||||
|
{ "x": 7, "y": 0 },
|
||||||
|
{ "x": 8, "y": 0 },
|
||||||
|
{ "x": 9, "y": 0 },
|
||||||
|
{ "x": 10, "y": 0 },
|
||||||
|
{ "x": 11, "y": 0 },
|
||||||
|
{ "x": 0, "y": 1 },
|
||||||
|
{ "x": 1, "y": 1 },
|
||||||
|
{ "x": 2, "y": 1 },
|
||||||
|
{ "x": 3, "y": 1 },
|
||||||
|
{ "x": 4, "y": 1 },
|
||||||
|
{ "x": 5, "y": 1 },
|
||||||
|
{ "x": 6, "y": 1 },
|
||||||
|
{ "x": 7, "y": 1 },
|
||||||
|
{ "x": 8, "y": 1 },
|
||||||
|
{ "x": 9, "y": 1 },
|
||||||
|
{ "x": 10, "y": 1 },
|
||||||
|
{ "x": 11, "y": 1 },
|
||||||
|
{ "x": 0, "y": 2 },
|
||||||
|
{ "x": 1, "y": 2 },
|
||||||
|
{ "x": 2, "y": 2 },
|
||||||
|
{ "x": 3, "y": 2 },
|
||||||
|
{ "x": 4, "y": 2 },
|
||||||
|
{ "x": 5, "y": 2 },
|
||||||
|
{ "x": 6, "y": 2 },
|
||||||
|
{ "x": 7, "y": 2 },
|
||||||
|
{ "x": 8, "y": 2 },
|
||||||
|
{ "x": 9, "y": 2 },
|
||||||
|
{ "x": 10, "y": 2 },
|
||||||
|
{ "x": 11, "y": 2 },
|
||||||
|
{ "x": 0, "y": 3 },
|
||||||
|
{ "x": 1, "y": 3 },
|
||||||
|
{ "x": 2, "y": 3 },
|
||||||
|
{ "x": 3, "y": 3 },
|
||||||
|
{ "x": 4, "y": 3 },
|
||||||
|
{ "x": 5, "y": 3, "w": 2 },
|
||||||
|
{ "x": 7, "y": 3 },
|
||||||
|
{ "x": 8, "y": 3 },
|
||||||
|
{ "x": 9, "y": 3 },
|
||||||
|
{ "x": 10, "y": 3 },
|
||||||
|
{ "x": 11, "y": 3 }
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"LAYOUT_planck_1x2uL": {
|
||||||
|
"key_count": 47,
|
||||||
|
"layout": [
|
||||||
|
{ "x": 0, "y": 0 },
|
||||||
|
{ "x": 1, "y": 0 },
|
||||||
|
{ "x": 2, "y": 0 },
|
||||||
|
{ "x": 3, "y": 0 },
|
||||||
|
{ "x": 4, "y": 0 },
|
||||||
|
{ "x": 5, "y": 0 },
|
||||||
|
{ "x": 6, "y": 0 },
|
||||||
|
{ "x": 7, "y": 0 },
|
||||||
|
{ "x": 8, "y": 0 },
|
||||||
|
{ "x": 9, "y": 0 },
|
||||||
|
{ "x": 10, "y": 0 },
|
||||||
|
{ "x": 11, "y": 0 },
|
||||||
|
{ "x": 0, "y": 1 },
|
||||||
|
{ "x": 1, "y": 1 },
|
||||||
|
{ "x": 2, "y": 1 },
|
||||||
|
{ "x": 3, "y": 1 },
|
||||||
|
{ "x": 4, "y": 1 },
|
||||||
|
{ "x": 5, "y": 1 },
|
||||||
|
{ "x": 6, "y": 1 },
|
||||||
|
{ "x": 7, "y": 1 },
|
||||||
|
{ "x": 8, "y": 1 },
|
||||||
|
{ "x": 9, "y": 1 },
|
||||||
|
{ "x": 10, "y": 1 },
|
||||||
|
{ "x": 11, "y": 1 },
|
||||||
|
{ "x": 0, "y": 2 },
|
||||||
|
{ "x": 1, "y": 2 },
|
||||||
|
{ "x": 2, "y": 2 },
|
||||||
|
{ "x": 3, "y": 2 },
|
||||||
|
{ "x": 4, "y": 2 },
|
||||||
|
{ "x": 5, "y": 2 },
|
||||||
|
{ "x": 6, "y": 2 },
|
||||||
|
{ "x": 7, "y": 2 },
|
||||||
|
{ "x": 8, "y": 2 },
|
||||||
|
{ "x": 9, "y": 2 },
|
||||||
|
{ "x": 10, "y": 2 },
|
||||||
|
{ "x": 11, "y": 2 },
|
||||||
|
{ "x": 0, "y": 3 },
|
||||||
|
{ "x": 1, "y": 3 },
|
||||||
|
{ "x": 2, "y": 3 },
|
||||||
|
{ "x": 3, "y": 3 },
|
||||||
|
{ "x": 4, "y": 3, "w": 2 },
|
||||||
|
{ "x": 6, "y": 3 },
|
||||||
|
{ "x": 7, "y": 3 },
|
||||||
|
{ "x": 8, "y": 3 },
|
||||||
|
{ "x": 9, "y": 3 },
|
||||||
|
{ "x": 10, "y": 3 },
|
||||||
|
{ "x": 11, "y": 3 }
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"LAYOUT_planck_1x2uR": {
|
||||||
|
"key_count": 47,
|
||||||
|
"layout": [
|
||||||
|
{ "x": 0, "y": 0 },
|
||||||
|
{ "x": 1, "y": 0 },
|
||||||
|
{ "x": 2, "y": 0 },
|
||||||
|
{ "x": 3, "y": 0 },
|
||||||
|
{ "x": 4, "y": 0 },
|
||||||
|
{ "x": 5, "y": 0 },
|
||||||
|
{ "x": 6, "y": 0 },
|
||||||
|
{ "x": 7, "y": 0 },
|
||||||
|
{ "x": 8, "y": 0 },
|
||||||
|
{ "x": 9, "y": 0 },
|
||||||
|
{ "x": 10, "y": 0 },
|
||||||
|
{ "x": 11, "y": 0 },
|
||||||
|
{ "x": 0, "y": 1 },
|
||||||
|
{ "x": 1, "y": 1 },
|
||||||
|
{ "x": 2, "y": 1 },
|
||||||
|
{ "x": 3, "y": 1 },
|
||||||
|
{ "x": 4, "y": 1 },
|
||||||
|
{ "x": 5, "y": 1 },
|
||||||
|
{ "x": 6, "y": 1 },
|
||||||
|
{ "x": 7, "y": 1 },
|
||||||
|
{ "x": 8, "y": 1 },
|
||||||
|
{ "x": 9, "y": 1 },
|
||||||
|
{ "x": 10, "y": 1 },
|
||||||
|
{ "x": 11, "y": 1 },
|
||||||
|
{ "x": 0, "y": 2 },
|
||||||
|
{ "x": 1, "y": 2 },
|
||||||
|
{ "x": 2, "y": 2 },
|
||||||
|
{ "x": 3, "y": 2 },
|
||||||
|
{ "x": 4, "y": 2 },
|
||||||
|
{ "x": 5, "y": 2 },
|
||||||
|
{ "x": 6, "y": 2 },
|
||||||
|
{ "x": 7, "y": 2 },
|
||||||
|
{ "x": 8, "y": 2 },
|
||||||
|
{ "x": 9, "y": 2 },
|
||||||
|
{ "x": 10, "y": 2 },
|
||||||
|
{ "x": 11, "y": 2 },
|
||||||
|
{ "x": 0, "y": 3 },
|
||||||
|
{ "x": 1, "y": 3 },
|
||||||
|
{ "x": 2, "y": 3 },
|
||||||
|
{ "x": 3, "y": 3 },
|
||||||
|
{ "x": 4, "y": 3 },
|
||||||
|
{ "x": 5, "y": 3 },
|
||||||
|
{ "x": 6, "y": 3, "w": 2 },
|
||||||
|
{ "x": 8, "y": 3 },
|
||||||
|
{ "x": 9, "y": 3 },
|
||||||
|
{ "x": 10, "y": 3 },
|
||||||
|
{ "x": 11, "y": 3 }
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"LAYOUT_planck_2x2u": {
|
||||||
|
"key_count": 46,
|
||||||
|
"layout": [
|
||||||
|
{ "x": 0, "y": 0 },
|
||||||
|
{ "x": 1, "y": 0 },
|
||||||
|
{ "x": 2, "y": 0 },
|
||||||
|
{ "x": 3, "y": 0 },
|
||||||
|
{ "x": 4, "y": 0 },
|
||||||
|
{ "x": 5, "y": 0 },
|
||||||
|
{ "x": 6, "y": 0 },
|
||||||
|
{ "x": 7, "y": 0 },
|
||||||
|
{ "x": 8, "y": 0 },
|
||||||
|
{ "x": 9, "y": 0 },
|
||||||
|
{ "x": 10, "y": 0 },
|
||||||
|
{ "x": 11, "y": 0 },
|
||||||
|
{ "x": 0, "y": 1 },
|
||||||
|
{ "x": 1, "y": 1 },
|
||||||
|
{ "x": 2, "y": 1 },
|
||||||
|
{ "x": 3, "y": 1 },
|
||||||
|
{ "x": 4, "y": 1 },
|
||||||
|
{ "x": 5, "y": 1 },
|
||||||
|
{ "x": 6, "y": 1 },
|
||||||
|
{ "x": 7, "y": 1 },
|
||||||
|
{ "x": 8, "y": 1 },
|
||||||
|
{ "x": 9, "y": 1 },
|
||||||
|
{ "x": 10, "y": 1 },
|
||||||
|
{ "x": 11, "y": 1 },
|
||||||
|
{ "x": 0, "y": 2 },
|
||||||
|
{ "x": 1, "y": 2 },
|
||||||
|
{ "x": 2, "y": 2 },
|
||||||
|
{ "x": 3, "y": 2 },
|
||||||
|
{ "x": 4, "y": 2 },
|
||||||
|
{ "x": 5, "y": 2 },
|
||||||
|
{ "x": 6, "y": 2 },
|
||||||
|
{ "x": 7, "y": 2 },
|
||||||
|
{ "x": 8, "y": 2 },
|
||||||
|
{ "x": 9, "y": 2 },
|
||||||
|
{ "x": 10, "y": 2 },
|
||||||
|
{ "x": 11, "y": 2 },
|
||||||
|
{ "x": 0, "y": 3 },
|
||||||
|
{ "x": 1, "y": 3 },
|
||||||
|
{ "x": 2, "y": 3 },
|
||||||
|
{ "x": 3, "y": 3 },
|
||||||
|
{ "x": 4, "y": 3, "w": 2 },
|
||||||
|
{ "x": 6, "y": 3, "w": 2 },
|
||||||
|
{ "x": 8, "y": 3 },
|
||||||
|
{ "x": 9, "y": 3 },
|
||||||
|
{ "x": 10, "y": 3 },
|
||||||
|
{ "x": 11, "y": 3 }
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue