Migrate hadron away from QWIIC_DRIVERS (#14415)

master
Joel Challis 2021-09-13 14:59:53 +01:00 committed by GitHub
parent 8a3f97b20f
commit cb4346edb7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 153 additions and 731 deletions

View File

@ -1,166 +0,0 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

View File

@ -1,46 +0,0 @@
#pragma once
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency
#define SCL_CLOCK 800000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();

View File

@ -28,10 +28,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define MATRIX_COL_PINS { F6, F7, D6, C7, F5, F4, F1, F0, D2, D3, D5, B3, B2, B1, B0 }
#define UNUSED_PINS
#define USE_I2C
#define SSD1306OLED
#define OLED_ROTATE180
// configure oled driver for the 128x32 oled
#define OLED_UPDATE_INTERVAL 33 // ~30fps
/* ws2812 RGB LED*/
#define RGB_DI_PIN D4

View File

@ -1,10 +1,4 @@
#include QMK_KEYBOARD_H
#ifdef USE_I2C
#include "i2c.h"
#endif
#ifdef SSD1306OLED
#include "ssd1306.h"
#endif
//Following line allows macro to read current RGB settings
extern rgblight_config_t rgblight_config;
@ -18,8 +12,8 @@ extern rgblight_config_t rgblight_config;
#define _DVORAK 2
#define _LOWER 3
#define _RAISE 4
#define _MOUSECURSOR 8
#define _ADJUST 16
#define _MOUSECURSOR 5
#define _ADJUST 6
enum preonic_keycodes {
QWERTY = SAFE_RANGE,
@ -307,115 +301,8 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
return true;
}
//Functions for ver2
#ifdef KEYBOARD_hadron_ver2
#include <LUFA/Drivers/Peripheral/TWI.h>
void matrix_init_user(void) {
#ifdef USE_I2C
i2c_master_init();
#ifdef SSD1306OLED
// calls code for the SSD1306 OLED
_delay_ms(400);
TWI_Init(TWI_BIT_PRESCALE_1, TWI_BITLENGTH_FROM_FREQ(1, 800000));
iota_gfx_init(); // turns on the display
#endif
#endif
#ifdef AUDIO_ENABLE
startup_user();
#endif
}
void matrix_scan_user(void) {
#ifdef SSD1306OLED
iota_gfx_task(); // this is what updates the display continuously
#endif
}
void matrix_update(struct CharacterMatrix *dest,
const struct CharacterMatrix *source) {
if (memcmp(dest->display, source->display, sizeof(dest->display))) {
memcpy(dest->display, source->display, sizeof(dest->display));
dest->dirty = true;
}
}
//assign the right code to your layers for OLED display
#define L_BASE 0
#define L_LOWER 8
#define L_RAISE 16
#define L_FNLAYER 64
#define L_NUMLAY 128
#define L_NLOWER 136
#define L_NFNLAYER 192
#define L_MOUSECURSOR 256
#define L_ADJUST 65560
void iota_gfx_task_user(void) {
#if DEBUG_TO_SCREEN
if (debug_enable) {
return;
}
#ifdef AUDIO_ENABLE
startup_user();
#endif
struct CharacterMatrix matrix;
matrix_clear(&matrix);
matrix_write_P(&matrix, PSTR("USB: "));
#ifdef PROTOCOL_LUFA
switch (USB_DeviceState) {
case DEVICE_STATE_Unattached:
matrix_write_P(&matrix, PSTR("Unattached"));
break;
case DEVICE_STATE_Suspended:
matrix_write_P(&matrix, PSTR("Suspended"));
break;
case DEVICE_STATE_Configured:
matrix_write_P(&matrix, PSTR("Connected"));
break;
case DEVICE_STATE_Powered:
matrix_write_P(&matrix, PSTR("Powered"));
break;
case DEVICE_STATE_Default:
matrix_write_P(&matrix, PSTR("Default"));
break;
case DEVICE_STATE_Addressed:
matrix_write_P(&matrix, PSTR("Addressed"));
break;
default:
matrix_write_P(&matrix, PSTR("Invalid"));
}
#endif
// Define layers here, Have not worked out how to have text displayed for each layer. Copy down the number you see and add a case for it below
char buf[40];
snprintf(buf,sizeof(buf), "Undef-%ld", layer_state);
matrix_write_P(&matrix, PSTR("\n\nLayer: "));
switch (layer_state) {
case L_BASE:
matrix_write_P(&matrix, PSTR("Default"));
break;
case L_RAISE:
matrix_write_P(&matrix, PSTR("Raise"));
break;
case L_LOWER:
matrix_write_P(&matrix, PSTR("Lower"));
break;
case L_ADJUST:
matrix_write_P(&matrix, PSTR("ADJUST"));
break;
default:
matrix_write(&matrix, buf);
}
// Host Keyboard LED Status
char led[40];
snprintf(led, sizeof(led), "\n%s %s %s",
(host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) ? "NUMLOCK" : " ",
(host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) ? "CAPS" : " ",
(host_keyboard_leds() & (1<<USB_LED_SCROLL_LOCK)) ? "SCLK" : " ");
matrix_write(&matrix, led);
matrix_update(&display, &matrix);
}
#endif

View File

@ -1,22 +0,0 @@
# How to add your own keymap
Folders can be named however you'd like (will be approved upon merging), or should follow the format with a preceding `_`:
_[ISO 3166-1 alpha-2 code*]_[layout variant]_[layout name/author]
\* See full list: https://en.wikipedia.org/wiki/ISO_3166-1#Officially_assigned_code_elements
and contain the following files:
* `keymap.c`
* `readme.md` *recommended*
* `config.h` *optional*, found automatically when compiling
* `Makefile` *optional*, found automatically when compling
When adding your keymap to this list, keep it organised alphabetically (select list, edit->sort lines), and use this format:
* **folder_name** description
# List of Planck keymaps
* **default** default Planck layout

View File

@ -1,15 +1,4 @@
#include QMK_KEYBOARD_H
#include <LUFA/Drivers/Peripheral/TWI.h>
#ifdef AUDIO_ENABLE
#include "audio.h"
#endif
#ifdef USE_I2C
#include "i2c.h"
#endif
#ifdef SSD1306OLED
#include "ssd1306.h"
#endif
extern keymap_config_t keymap_config;
//Following line allows macro to read current RGB settings
extern rgblight_config_t rgblight_config;
@ -19,12 +8,12 @@ extern rgblight_config_t rgblight_config;
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
#define _QWERTY 0
#define _LOWER 3
#define _RAISE 4
#define _FNLAYER 6
#define _NUMLAY 7
#define _MOUSECURSOR 8
#define _ADJUST 16
#define _LOWER 1
#define _RAISE 2
#define _FNLAYER 3
#define _NUMLAY 4
#define _MOUSECURSOR 5
#define _ADJUST 6
enum preonic_keycodes {
QWERTY = SAFE_RANGE,
@ -41,10 +30,7 @@ enum preonic_keycodes {
RGBLED_DECREASE_SAT,
RGBLED_INCREASE_VAL,
RGBLED_DECREASE_VAL,
};
enum macro_keycodes {
KC_DEMOMACRO,
DEMOMACRO,
};
// Custom macros
@ -57,7 +43,6 @@ enum macro_keycodes {
#define LT_MC(kc) LT(_MOUSECURSOR, kc) // L-ayer T-ap M-ouse C-ursor
#define LT_RAI(kc) LT(_RAISE, kc) // L-ayer T-ap to Raise
#define TG_NUMLAY TG(_NUMLAY) //Toggle for layer _NUMLAY
#define DEMOMACRO M(KC_DEMOMACRO) // My login macros
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
@ -322,29 +307,20 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
}
return false;
break;
case DEMOMACRO:
if (record->event.pressed) {
SEND_STRING("hello world");
}
return false;
break;
}
return true;
}
void matrix_init_user(void) {
#ifdef USE_I2C
i2c_master_init();
#ifdef SSD1306OLED
// calls code for the SSD1306 OLED
_delay_ms(400);
TWI_Init(TWI_BIT_PRESCALE_1, TWI_BITLENGTH_FROM_FREQ(1, 800000));
iota_gfx_init(); // turns on the display
#endif
#endif
#ifdef AUDIO_ENABLE
startup_user();
#endif
}
void matrix_scan_user(void) {
#ifdef SSD1306OLED
iota_gfx_task(); // this is what updates the display continuously
#endif
#ifdef AUDIO_ENABLE
startup_user();
#endif
}
#ifdef AUDIO_ENABLE
@ -373,109 +349,3 @@ void music_scale_user(void)
}
#endif
/*
* Macro definition
*/
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
switch (id) {
case KC_DEMOMACRO:
if (record->event.pressed){
return MACRO (I(1), T(H),T(E),T(L), T(L), T(O), T(SPACE), T(W), T(O), T(R), T(L), T(D), END);
}
}
return MACRO_NONE;
}
void matrix_update(struct CharacterMatrix *dest,
const struct CharacterMatrix *source) {
if (memcmp(dest->display, source->display, sizeof(dest->display))) {
memcpy(dest->display, source->display, sizeof(dest->display));
dest->dirty = true;
}
}
//assign the right code to your layers for OLED display
#define L_BASE 0
#define L_LOWER 8
#define L_RAISE 16
#define L_FNLAYER 64
#define L_NUMLAY 128
#define L_NLOWER 136
#define L_NFNLAYER 192
#define L_MOUSECURSOR 256
#define L_ADJUST 65560
void iota_gfx_task_user(void) {
#if DEBUG_TO_SCREEN
if (debug_enable) {
return;
}
#endif
struct CharacterMatrix matrix;
matrix_clear(&matrix);
matrix_write_P(&matrix, PSTR("USB: "));
#ifdef PROTOCOL_LUFA
switch (USB_DeviceState) {
case DEVICE_STATE_Unattached:
matrix_write_P(&matrix, PSTR("Unattached"));
break;
case DEVICE_STATE_Suspended:
matrix_write_P(&matrix, PSTR("Suspended"));
break;
case DEVICE_STATE_Configured:
matrix_write_P(&matrix, PSTR("Connected"));
break;
case DEVICE_STATE_Powered:
matrix_write_P(&matrix, PSTR("Powered"));
break;
case DEVICE_STATE_Default:
matrix_write_P(&matrix, PSTR("Default"));
break;
case DEVICE_STATE_Addressed:
matrix_write_P(&matrix, PSTR("Addressed"));
break;
default:
matrix_write_P(&matrix, PSTR("Invalid"));
}
#endif
// Define layers here, Have not worked out how to have text displayed for each layer. Copy down the number you see and add a case for it below
char buf[40];
snprintf(buf,sizeof(buf), "Undef-%ld", layer_state);
matrix_write_P(&matrix, PSTR("\n\nLayer: "));
switch (layer_state) {
case L_BASE:
matrix_write_P(&matrix, PSTR("Default"));
break;
case L_RAISE:
matrix_write_P(&matrix, PSTR("Raise"));
break;
case L_LOWER:
matrix_write_P(&matrix, PSTR("Lower"));
break;
case L_ADJUST:
matrix_write_P(&matrix, PSTR("ADJUST"));
break;
default:
matrix_write(&matrix, buf);
}
// Host Keyboard LED Status
char led[40];
snprintf(led, sizeof(led), "\n%s %s %s",
(host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) ? "NUMLOCK" : " ",
(host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) ? "CAPS" : " ",
(host_keyboard_leds() & (1<<USB_LED_SCROLL_LOCK)) ? "SCLK" : " ");
matrix_write(&matrix, led);
matrix_update(&display, &matrix);
}

View File

@ -5,27 +5,19 @@ MCU = atmega32u4
BOOTLOADER = halfkay
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = no # Enable Bootmagic Lite
MOUSEKEY_ENABLE = no # Mouse keys
BOOTMAGIC_ENABLE = yes # Enable Bootmagic Lite
MOUSEKEY_ENABLE = yes # Mouse keys
EXTRAKEY_ENABLE = yes # Audio control and System control
CONSOLE_ENABLE = no # Console for debug
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
RGBLIGHT_ENABLE = yes # Enable WS2812 RGB underlight.
SWAP_HANDS_ENABLE = no # Enable one-hand typing
COMMAND_ENABLE = no # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
EXTRAFLAGS += -flto
SRC = i2c.c \
ssd1306.c
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = yes # USB Nkey Rollover
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no # Audio output
RGBLIGHT_ENABLE = yes # Enable WS2812 RGB underlight
OLED_ENABLE = yes
OLED_DRIVER = SSD1306

View File

@ -1 +1,65 @@
#include "ver2.h"
#ifdef OLED_ENABLE
__attribute__ ((weak))
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
return OLED_ROTATION_180;
}
__attribute__ ((weak))
void oled_task_user(void) {
oled_write_P(PSTR("LAYER "), false);
oled_write_char(get_highest_layer(layer_state) + 0x30, true);
led_t led_state = host_keyboard_led_state();
oled_set_cursor(18, 0);
oled_write_P(PSTR("NUM"), led_state.num_lock);
oled_set_cursor(18, 1);
oled_write_P(PSTR("CAP"), led_state.caps_lock);
oled_set_cursor(18, 2);
oled_write_P(PSTR("SCR"), led_state.scroll_lock);
uint8_t mod_state = get_mods();
oled_set_cursor(10, 3);
oled_write_P(PSTR("S"), mod_state & MOD_MASK_SHIFT);
oled_advance_char();
oled_write_P(PSTR("C"), mod_state & MOD_MASK_CTRL);
oled_advance_char();
oled_write_P(PSTR("A"), mod_state & MOD_MASK_ALT);
oled_advance_char();
oled_write_P(PSTR("G"), mod_state & MOD_MASK_GUI);
oled_advance_char();
/* Matrix display is 12 x 12 pixels */
#define MATRIX_DISPLAY_X 5
#define MATRIX_DISPLAY_Y 18
// matrix
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
for (uint8_t y = 0; y < MATRIX_COLS; y++) {
bool on = (matrix_get_row(x) & (1 << y)) > 0;
oled_write_pixel(MATRIX_DISPLAY_X + y + 2, MATRIX_DISPLAY_Y + x + 2, on);
}
}
// outline
for (uint8_t x = 0; x < 19; x++) {
oled_write_pixel(MATRIX_DISPLAY_X + x, MATRIX_DISPLAY_Y, true);
oled_write_pixel(MATRIX_DISPLAY_X + x, MATRIX_DISPLAY_Y + 9, true);
}
for (uint8_t y = 0; y < 9; y++) {
oled_write_pixel(MATRIX_DISPLAY_X, MATRIX_DISPLAY_Y+y, true);
oled_write_pixel(MATRIX_DISPLAY_X + 19, MATRIX_DISPLAY_Y+y, true);
}
// oled location
for (uint8_t x = 0; x < 3; x++) {
oled_write_pixel(MATRIX_DISPLAY_X + 14 + x, MATRIX_DISPLAY_Y + 2, true);
}
// bodge for layer number left hand side
for (uint8_t y = 0; y < 8; y++) {
oled_write_pixel(35, 0 + y, true);
}
}
#endif

View File

@ -1,3 +1,3 @@
#pragma once
#include "../hadron.h"
#include "hadron.h"

View File

@ -69,16 +69,8 @@
#define AUDIO_CLICKY_FREQ_RANDOMNESS 1.5f
#endif
//configure qwiic micro_oled driver for the 128x32 oled
#ifdef QWIIC_MICRO_OLED_ENABLE
#undef I2C_ADDRESS_SA0_1
#define I2C_ADDRESS_SA0_1 0b0111100
#define LCDWIDTH 128
#define LCDHEIGHT 32
#define micro_oled_rotate_180
#endif
// configure oled driver for the 128x32 oled
#define OLED_UPDATE_INTERVAL 33 // ~30fps
/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
// #define DEBOUNCE 6

View File

@ -1 +0,0 @@
#pragma once

View File

@ -9,8 +9,8 @@
#define _DVORAK 2
#define _LOWER 3
#define _RAISE 4
#define _MOUSECURSOR 8
#define _ADJUST 16
#define _MOUSECURSOR 5
#define _ADJUST 6
enum preonic_keycodes {
QWERTY = SAFE_RANGE,

View File

@ -1,24 +0,0 @@
# How to add your own keymap
Folders can be named however you'd like (will be approved upon merging), or should follow the format with a preceding `_`:
_[ISO 3166-1 alpha-2 code*]_[layout variant]_[layout name/author]
\* See full list: https://en.wikipedia.org/wiki/ISO_3166-1#Officially_assigned_code_elements
and contain the following files:
* `keymap.c`
* `readme.md` *recommended*
* `config.h` *optional*, found automatically when compiling
* `Makefile` *optional*, found automatically when compling
When adding your keymap to this list, keep it organised alphabetically (select list, edit->sort lines), and use this format:
* **folder_name** description
# List of Hadron keymaps
* **default** default Hadron layout
* **ishtob** ishtob's Hadron layout
* **sebaslayout** sebaslayout's Hadron layout

View File

@ -22,6 +22,6 @@ RGBLIGHT_ENABLE = yes
RGB_MATRIX_ENABLE = no # once arm_rgb is implemented
RGB_MATRIX_DRIVER = WS2812
HAPTIC_ENABLE += DRV2605L
QWIIC_ENABLE = yes
QWIIC_DRIVERS += MICRO_OLED
OLED_ENABLE = yes
OLED_DRIVER = SSD1306
ENCODER_ENABLER = yes

View File

@ -14,9 +14,6 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ver3.h"
#include "qwiic.h"
#include "action_layer.h"
#include "haptic.h"
#ifdef RGB_MATRIX_ENABLE
@ -36,185 +33,66 @@ led_config_t g_led_config = { {
#endif
uint8_t *o_fb;
uint16_t counterst = 0;
#ifdef QWIIC_MICRO_OLED_ENABLE
/* screen off after this many milliseconds */
#include "timer.h"
#define ScreenOffInterval 60000 /* milliseconds */
static uint16_t last_flush;
volatile uint8_t led_numlock = false;
volatile uint8_t led_capslock = false;
volatile uint8_t led_scrolllock = false;
static uint8_t layer;
static bool queue_for_send = false;
static uint8_t encoder_value = 32;
#ifdef OLED_ENABLE
__attribute__ ((weak))
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
return OLED_ROTATION_180;
}
__attribute__ ((weak))
void draw_ui(void) {
clear_buffer();
last_flush = timer_read();
send_command(DISPLAYON);
void oled_task_user(void) {
oled_write_P(PSTR("LAYER "), false);
oled_write_char(get_highest_layer(layer_state) + 0x30, true);
/* Layer indicator is 41 x 10 pixels */
#define LAYER_INDICATOR_X 5
#define LAYER_INDICATOR_Y 0
led_t led_state = host_keyboard_led_state();
oled_set_cursor(18, 0);
oled_write_P(PSTR("NUM"), led_state.num_lock);
oled_set_cursor(18, 1);
oled_write_P(PSTR("CAP"), led_state.caps_lock);
oled_set_cursor(18, 2);
oled_write_P(PSTR("SCR"), led_state.scroll_lock);
draw_string(LAYER_INDICATOR_X + 1, LAYER_INDICATOR_Y + 2, "LAYER", PIXEL_ON, NORM, 0);
draw_rect_filled_soft(LAYER_INDICATOR_X + 32, LAYER_INDICATOR_Y + 1, 9, 9, PIXEL_ON, NORM);
draw_char(LAYER_INDICATOR_X + 34, LAYER_INDICATOR_Y + 2, layer + 0x30, PIXEL_ON, XOR, 0);
uint8_t mod_state = get_mods();
oled_set_cursor(10, 3);
oled_write_P(PSTR("S"), mod_state & MOD_MASK_SHIFT);
oled_advance_char();
oled_write_P(PSTR("C"), mod_state & MOD_MASK_CTRL);
oled_advance_char();
oled_write_P(PSTR("A"), mod_state & MOD_MASK_ALT);
oled_advance_char();
oled_write_P(PSTR("G"), mod_state & MOD_MASK_GUI);
oled_advance_char();
/* Matrix display is 19 x 9 pixels */
/* Matrix display is 12 x 12 pixels */
#define MATRIX_DISPLAY_X 5
#define MATRIX_DISPLAY_Y 18
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
for (uint8_t y = 0; y < MATRIX_COLS; y++) {
draw_pixel(MATRIX_DISPLAY_X + y + 2, MATRIX_DISPLAY_Y + x + 2,(matrix_get_row(x) & (1 << y)) > 0, NORM);
// matrix
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
for (uint8_t y = 0; y < MATRIX_COLS; y++) {
bool on = (matrix_get_row(x) & (1 << y)) > 0;
oled_write_pixel(MATRIX_DISPLAY_X + y + 2, MATRIX_DISPLAY_Y + x + 2, on);
}
}
}
draw_rect_soft(MATRIX_DISPLAY_X, MATRIX_DISPLAY_Y, 19, 9, PIXEL_ON, NORM);
/* hadron oled location on thumbnail */
draw_rect_filled_soft(MATRIX_DISPLAY_X + 14, MATRIX_DISPLAY_Y + 2, 3, 1, PIXEL_ON, NORM);
/*
draw_rect_soft(0, 13, 64, 6, PIXEL_ON, NORM);
draw_line_vert(encoder_value, 13, 6, PIXEL_ON, NORM);
*/
/* Mod display is 41 x 16 pixels */
#define MOD_DISPLAY_X 30
#define MOD_DISPLAY_Y 18
uint8_t mods = get_mods();
if (mods & MOD_LSFT) {
draw_rect_filled_soft(MOD_DISPLAY_X + 0, MOD_DISPLAY_Y, 5 + (1 * 6), 11, PIXEL_ON, NORM);
draw_string(MOD_DISPLAY_X + 3, MOD_DISPLAY_Y + 2, "S", PIXEL_OFF, NORM, 0);
} else {
draw_string(MOD_DISPLAY_X + 3, MOD_DISPLAY_Y + 2, "S", PIXEL_ON, NORM, 0);
}
if (mods & MOD_LCTL) {
draw_rect_filled_soft(MOD_DISPLAY_X + 10, MOD_DISPLAY_Y, 5 + (1 * 6), 11, PIXEL_ON, NORM);
draw_string(MOD_DISPLAY_X + 13, MOD_DISPLAY_Y + 2, "C", PIXEL_OFF, NORM, 0);
} else {
draw_string(MOD_DISPLAY_X + 13, MOD_DISPLAY_Y + 2, "C", PIXEL_ON, NORM, 0);
}
if (mods & MOD_LALT) {
draw_rect_filled_soft(MOD_DISPLAY_X + 20, MOD_DISPLAY_Y, 5 + (1 * 6), 11, PIXEL_ON, NORM);
draw_string(MOD_DISPLAY_X + 23, MOD_DISPLAY_Y + 2, "A", PIXEL_OFF, NORM, 0);
} else {
draw_string(MOD_DISPLAY_X + 23, MOD_DISPLAY_Y + 2, "A", PIXEL_ON, NORM, 0);
}
if (mods & MOD_LGUI) {
draw_rect_filled_soft(MOD_DISPLAY_X + 30, MOD_DISPLAY_Y, 5 + (1 * 6), 11, PIXEL_ON, NORM);
draw_string(MOD_DISPLAY_X + 33, MOD_DISPLAY_Y + 2, "G", PIXEL_OFF, NORM, 0);
} else {
draw_string(MOD_DISPLAY_X + 33, MOD_DISPLAY_Y + 2, "G", PIXEL_ON, NORM, 0);
}
/* Lock display is 23 x 32 */
#define LOCK_DISPLAY_X 100
#define LOCK_DISPLAY_Y 0
if (led_numlock == true) {
draw_rect_filled_soft(LOCK_DISPLAY_X, LOCK_DISPLAY_Y, 5 + (3 * 6), 9, PIXEL_ON, NORM);
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 1, "NUM", PIXEL_OFF, NORM, 0);
} else if (led_numlock == false) {
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 1, "NUM", PIXEL_ON, NORM, 0);
}
if (led_capslock == true) {
draw_rect_filled_soft(LOCK_DISPLAY_X + 0, LOCK_DISPLAY_Y + 11, 5 + (3 * 6), 9, PIXEL_ON, NORM);
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 11 +1, "CAP", PIXEL_OFF, NORM, 0);
} else if (led_capslock == false) {
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 11 +1, "CAP", PIXEL_ON, NORM, 0);
}
if (led_scrolllock == true) {
draw_rect_filled_soft(LOCK_DISPLAY_X + 0, LOCK_DISPLAY_Y + 22, 5 + (3 * 6), 9, PIXEL_ON, NORM);
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 22 +1, "SCR", PIXEL_OFF, NORM, 0);
} else if (led_scrolllock == false) {
draw_string(LOCK_DISPLAY_X + 3, LOCK_DISPLAY_Y + 22 +1, "SCR", PIXEL_ON, NORM, 0);
}
send_buffer();
}
void read_host_led_state(void) {
uint8_t leds = host_keyboard_leds();
if (leds & (1 << USB_LED_NUM_LOCK)) {
if (led_numlock == false){
led_numlock = true;}
} else {
if (led_numlock == true){
led_numlock = false;}
// outline
for (uint8_t x = 0; x < 19; x++) {
oled_write_pixel(MATRIX_DISPLAY_X + x, MATRIX_DISPLAY_Y, true);
oled_write_pixel(MATRIX_DISPLAY_X + x, MATRIX_DISPLAY_Y + 9, true);
}
if (leds & (1 << USB_LED_CAPS_LOCK)) {
if (led_capslock == false){
led_capslock = true;}
} else {
if (led_capslock == true){
led_capslock = false;}
for (uint8_t y = 0; y < 9; y++) {
oled_write_pixel(MATRIX_DISPLAY_X, MATRIX_DISPLAY_Y+y, true);
oled_write_pixel(MATRIX_DISPLAY_X + 19, MATRIX_DISPLAY_Y+y, true);
}
if (leds & (1 << USB_LED_SCROLL_LOCK)) {
if (led_scrolllock == false){
led_scrolllock = true;}
} else {
if (led_scrolllock == true){
led_scrolllock = false;}
// oled location
for (uint8_t x = 0; x < 3; x++) {
oled_write_pixel(MATRIX_DISPLAY_X + 14 + x, MATRIX_DISPLAY_Y + 2, true);
}
// bodge for layer number left hand side
for (uint8_t y = 0; y < 8; y++) {
oled_write_pixel(35, 0 + y, true);
}
}
uint32_t layer_state_set_kb(uint32_t state) {
state = layer_state_set_user(state);
layer = biton32(state);
queue_for_send = true;
return state;
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
queue_for_send = true;
return process_record_user(keycode, record);
}
bool encoder_update_user(uint8_t index, bool clockwise);
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) return false;
encoder_value = (encoder_value + (clockwise ? 1 : -1)) % 64;
queue_for_send = true;
return true;
}
#endif
void matrix_init_kb(void) {
queue_for_send = true;
matrix_init_user();
}
void matrix_scan_kb(void) {
if (queue_for_send) {
#ifdef QWIIC_MICRO_OLED_ENABLE
read_host_led_state();
draw_ui();
#endif
queue_for_send = false;
}
#ifdef QWIIC_MICRO_OLED_ENABLE
if (timer_elapsed(last_flush) > ScreenOffInterval) {
send_command(DISPLAYOFF); /* 0xAE */
}
#endif
if (counterst == 0) {
//testPatternFB(o_fb);
}
counterst = (counterst + 1) % 1024;
//rgblight_task();
matrix_scan_user();
}