813 lines
34 KiB
C++
813 lines
34 KiB
C++
|
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
|
||
|
|
||
|
This software may be distributed and modified under the terms of the GNU
|
||
|
General Public License version 2 (GPL2) as published by the Free Software
|
||
|
Foundation and appearing in the file GPL2.TXT included in the packaging of
|
||
|
this file. Please note that GPL2 Section 2[b] requires that all works based
|
||
|
on this software must also be made publicly available under the terms of
|
||
|
the GPL2 ("Copyleft").
|
||
|
|
||
|
Contact information
|
||
|
-------------------
|
||
|
|
||
|
Circuits At Home, LTD
|
||
|
Web : http://www.circuitsathome.com
|
||
|
e-mail : support@circuitsathome.com
|
||
|
*/
|
||
|
/* USB functions */
|
||
|
|
||
|
#include "Usb.h"
|
||
|
|
||
|
static uint8_t usb_error = 0;
|
||
|
static uint8_t usb_task_state;
|
||
|
|
||
|
/* constructor */
|
||
|
USB::USB() : bmHubPre(0) {
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; //set up state machine
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
/* Initialize data structures */
|
||
|
void USB::init() {
|
||
|
//devConfigIndex = 0;
|
||
|
bmHubPre = 0;
|
||
|
}
|
||
|
|
||
|
uint8_t USB::getUsbTaskState(void) {
|
||
|
return ( usb_task_state);
|
||
|
}
|
||
|
|
||
|
void USB::setUsbTaskState(uint8_t state) {
|
||
|
usb_task_state = state;
|
||
|
}
|
||
|
|
||
|
EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
|
||
|
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
|
||
|
|
||
|
if(!p || !p->epinfo)
|
||
|
return NULL;
|
||
|
|
||
|
EpInfo *pep = p->epinfo;
|
||
|
|
||
|
for(uint8_t i = 0; i < p->epcount; i++) {
|
||
|
if((pep)->epAddr == ep)
|
||
|
return pep;
|
||
|
|
||
|
pep++;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* set device table entry */
|
||
|
|
||
|
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
|
||
|
uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) {
|
||
|
if(!eprecord_ptr)
|
||
|
return USB_ERROR_INVALID_ARGUMENT;
|
||
|
|
||
|
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
|
||
|
|
||
|
if(!p)
|
||
|
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
|
||
|
|
||
|
p->address.devAddress = addr;
|
||
|
p->epinfo = eprecord_ptr;
|
||
|
p->epcount = epcount;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t *nak_limit) {
|
||
|
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
|
||
|
|
||
|
if(!p)
|
||
|
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
|
||
|
|
||
|
if(!p->epinfo)
|
||
|
return USB_ERROR_EPINFO_IS_NULL;
|
||
|
|
||
|
*ppep = getEpInfoEntry(addr, ep);
|
||
|
|
||
|
if(!*ppep)
|
||
|
return USB_ERROR_EP_NOT_FOUND_IN_TBL;
|
||
|
|
||
|
*nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower));
|
||
|
(*nak_limit)--;
|
||
|
/*
|
||
|
USBTRACE2("\r\nAddress: ", addr);
|
||
|
USBTRACE2(" EP: ", ep);
|
||
|
USBTRACE2(" NAK Power: ",(*ppep)->bmNakPower);
|
||
|
USBTRACE2(" NAK Limit: ", nak_limit);
|
||
|
USBTRACE("\r\n");
|
||
|
*/
|
||
|
regWr(rPERADDR, addr); //set peripheral address
|
||
|
|
||
|
uint8_t mode = regRd(rMODE);
|
||
|
|
||
|
//Serial.print("\r\nMode: ");
|
||
|
//Serial.println( mode, HEX);
|
||
|
//Serial.print("\r\nLS: ");
|
||
|
//Serial.println(p->lowspeed, HEX);
|
||
|
|
||
|
|
||
|
|
||
|
// Set bmLOWSPEED and bmHUBPRE in case of low-speed device, reset them otherwise
|
||
|
regWr(rMODE, (p->lowspeed) ? mode | bmLOWSPEED | bmHubPre : mode & ~(bmHUBPRE | bmLOWSPEED));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */
|
||
|
/* depending on request. Actual requests are defined as inlines */
|
||
|
/* return codes: */
|
||
|
/* 00 = success */
|
||
|
|
||
|
/* 01-0f = non-zero HRSLT */
|
||
|
uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bRequest, uint8_t wValLo, uint8_t wValHi,
|
||
|
uint16_t wInd, uint16_t total, uint16_t nbytes, uint8_t* dataptr, USBReadParser *p) {
|
||
|
bool direction = false; //request direction, IN or OUT
|
||
|
uint8_t rcode;
|
||
|
SETUP_PKT setup_pkt;
|
||
|
|
||
|
EpInfo *pep = NULL;
|
||
|
uint16_t nak_limit = 0;
|
||
|
|
||
|
rcode = SetAddress(addr, ep, &pep, &nak_limit);
|
||
|
|
||
|
if(rcode)
|
||
|
return rcode;
|
||
|
|
||
|
direction = ((bmReqType & 0x80) > 0);
|
||
|
|
||
|
/* fill in setup packet */
|
||
|
setup_pkt.ReqType_u.bmRequestType = bmReqType;
|
||
|
setup_pkt.bRequest = bRequest;
|
||
|
setup_pkt.wVal_u.wValueLo = wValLo;
|
||
|
setup_pkt.wVal_u.wValueHi = wValHi;
|
||
|
setup_pkt.wIndex = wInd;
|
||
|
setup_pkt.wLength = total;
|
||
|
|
||
|
bytesWr(rSUDFIFO, 8, (uint8_t*) & setup_pkt); //transfer to setup packet FIFO
|
||
|
|
||
|
rcode = dispatchPkt(tokSETUP, ep, nak_limit); //dispatch packet
|
||
|
|
||
|
if(rcode) //return HRSLT if not zero
|
||
|
return ( rcode);
|
||
|
|
||
|
if(dataptr != NULL) //data stage, if present
|
||
|
{
|
||
|
if(direction) //IN transfer
|
||
|
{
|
||
|
uint16_t left = total;
|
||
|
|
||
|
pep->bmRcvToggle = 1; //bmRCVTOG1;
|
||
|
|
||
|
while(left) {
|
||
|
// Bytes read into buffer
|
||
|
uint16_t read = nbytes;
|
||
|
//uint16_t read = (left<nbytes) ? left : nbytes;
|
||
|
|
||
|
rcode = InTransfer(pep, nak_limit, &read, dataptr);
|
||
|
if(rcode == hrTOGERR) {
|
||
|
// yes, we flip it wrong here so that next time it is actually correct!
|
||
|
pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if(rcode)
|
||
|
return rcode;
|
||
|
|
||
|
// Invoke callback function if inTransfer completed successfully and callback function pointer is specified
|
||
|
if(!rcode && p)
|
||
|
((USBReadParser*)p)->Parse(read, dataptr, total - left);
|
||
|
|
||
|
left -= read;
|
||
|
|
||
|
if(read < nbytes)
|
||
|
break;
|
||
|
}
|
||
|
} else //OUT transfer
|
||
|
{
|
||
|
pep->bmSndToggle = 1; //bmSNDTOG1;
|
||
|
rcode = OutTransfer(pep, nak_limit, nbytes, dataptr);
|
||
|
}
|
||
|
if(rcode) //return error
|
||
|
return ( rcode);
|
||
|
}
|
||
|
// Status stage
|
||
|
return dispatchPkt((direction) ? tokOUTHS : tokINHS, ep, nak_limit); //GET if direction
|
||
|
}
|
||
|
|
||
|
/* IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
|
||
|
/* Keep sending INs and writes data to memory area pointed by 'data' */
|
||
|
|
||
|
/* rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error,
|
||
|
fe USB xfer timeout */
|
||
|
uint8_t USB::inTransfer(uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t* data) {
|
||
|
EpInfo *pep = NULL;
|
||
|
uint16_t nak_limit = 0;
|
||
|
|
||
|
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
|
||
|
|
||
|
if(rcode) {
|
||
|
USBTRACE3("(USB::InTransfer) SetAddress Failed ", rcode, 0x81);
|
||
|
USBTRACE3("(USB::InTransfer) addr requested ", addr, 0x81);
|
||
|
USBTRACE3("(USB::InTransfer) ep requested ", ep, 0x81);
|
||
|
return rcode;
|
||
|
}
|
||
|
return InTransfer(pep, nak_limit, nbytesptr, data);
|
||
|
}
|
||
|
|
||
|
uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, uint8_t* data) {
|
||
|
uint8_t rcode = 0;
|
||
|
uint8_t pktsize;
|
||
|
|
||
|
uint16_t nbytes = *nbytesptr;
|
||
|
//printf("Requesting %i bytes ", nbytes);
|
||
|
uint8_t maxpktsize = pep->maxPktSize;
|
||
|
|
||
|
*nbytesptr = 0;
|
||
|
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
|
||
|
|
||
|
// use a 'break' to exit this loop
|
||
|
while(1) {
|
||
|
rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); //IN packet to EP-'endpoint'. Function takes care of NAKS.
|
||
|
if(rcode == hrTOGERR) {
|
||
|
// yes, we flip it wrong here so that next time it is actually correct!
|
||
|
pep->bmRcvToggle = (regRd(rHRSL) & bmRCVTOGRD) ? 0 : 1;
|
||
|
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
|
||
|
continue;
|
||
|
}
|
||
|
if(rcode) {
|
||
|
//printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode);
|
||
|
break; //should be 0, indicating ACK. Else return error code.
|
||
|
}
|
||
|
/* check for RCVDAVIRQ and generate error if not present */
|
||
|
/* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred. Need to add handling for that */
|
||
|
if((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) {
|
||
|
//printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n");
|
||
|
rcode = 0xf0; //receive error
|
||
|
break;
|
||
|
}
|
||
|
pktsize = regRd(rRCVBC); //number of received bytes
|
||
|
//printf("Got %i bytes \r\n", pktsize);
|
||
|
// This would be OK, but...
|
||
|
//assert(pktsize <= nbytes);
|
||
|
if(pktsize > nbytes) {
|
||
|
// This can happen. Use of assert on Arduino locks up the Arduino.
|
||
|
// So I will trim the value, and hope for the best.
|
||
|
//printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize);
|
||
|
pktsize = nbytes;
|
||
|
}
|
||
|
|
||
|
int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr);
|
||
|
|
||
|
if(mem_left < 0)
|
||
|
mem_left = 0;
|
||
|
|
||
|
data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data);
|
||
|
|
||
|
regWr(rHIRQ, bmRCVDAVIRQ); // Clear the IRQ & free the buffer
|
||
|
*nbytesptr += pktsize; // add this packet's byte count to total transfer length
|
||
|
|
||
|
/* The transfer is complete under two conditions: */
|
||
|
/* 1. The device sent a short packet (L.T. maxPacketSize) */
|
||
|
/* 2. 'nbytes' have been transferred. */
|
||
|
if((pktsize < maxpktsize) || (*nbytesptr >= nbytes)) // have we transferred 'nbytes' bytes?
|
||
|
{
|
||
|
// Save toggle value
|
||
|
pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0;
|
||
|
//printf("\r\n");
|
||
|
rcode = 0;
|
||
|
break;
|
||
|
} // if
|
||
|
} //while( 1 )
|
||
|
return ( rcode);
|
||
|
}
|
||
|
|
||
|
/* OUT transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
|
||
|
/* Handles NAK bug per Maxim Application Note 4000 for single buffer transfer */
|
||
|
|
||
|
/* rcode 0 if no errors. rcode 01-0f is relayed from HRSL */
|
||
|
uint8_t USB::outTransfer(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* data) {
|
||
|
EpInfo *pep = NULL;
|
||
|
uint16_t nak_limit = 0;
|
||
|
|
||
|
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
|
||
|
|
||
|
if(rcode)
|
||
|
return rcode;
|
||
|
|
||
|
return OutTransfer(pep, nak_limit, nbytes, data);
|
||
|
}
|
||
|
|
||
|
uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8_t *data) {
|
||
|
uint8_t rcode = hrSUCCESS, retry_count;
|
||
|
uint8_t *data_p = data; //local copy of the data pointer
|
||
|
uint16_t bytes_tosend, nak_count;
|
||
|
uint16_t bytes_left = nbytes;
|
||
|
|
||
|
uint8_t maxpktsize = pep->maxPktSize;
|
||
|
|
||
|
if(maxpktsize < 1 || maxpktsize > 64)
|
||
|
return USB_ERROR_INVALID_MAX_PKT_SIZE;
|
||
|
|
||
|
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
|
||
|
|
||
|
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
|
||
|
|
||
|
while(bytes_left) {
|
||
|
retry_count = 0;
|
||
|
nak_count = 0;
|
||
|
bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left;
|
||
|
bytesWr(rSNDFIFO, bytes_tosend, data_p); //filling output FIFO
|
||
|
regWr(rSNDBC, bytes_tosend); //set number of bytes
|
||
|
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
|
||
|
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
|
||
|
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
|
||
|
rcode = (regRd(rHRSL) & 0x0f);
|
||
|
|
||
|
while(rcode && ((long)(millis() - timeout) < 0L)) {
|
||
|
switch(rcode) {
|
||
|
case hrNAK:
|
||
|
nak_count++;
|
||
|
if(nak_limit && (nak_count == nak_limit))
|
||
|
goto breakout;
|
||
|
//return ( rcode);
|
||
|
break;
|
||
|
case hrTIMEOUT:
|
||
|
retry_count++;
|
||
|
if(retry_count == USB_RETRY_LIMIT)
|
||
|
goto breakout;
|
||
|
//return ( rcode);
|
||
|
break;
|
||
|
case hrTOGERR:
|
||
|
// yes, we flip it wrong here so that next time it is actually correct!
|
||
|
pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
|
||
|
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
|
||
|
break;
|
||
|
default:
|
||
|
goto breakout;
|
||
|
}//switch( rcode
|
||
|
|
||
|
/* process NAK according to Host out NAK bug */
|
||
|
regWr(rSNDBC, 0);
|
||
|
regWr(rSNDFIFO, *data_p);
|
||
|
regWr(rSNDBC, bytes_tosend);
|
||
|
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
|
||
|
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
|
||
|
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
|
||
|
rcode = (regRd(rHRSL) & 0x0f);
|
||
|
}//while( rcode && ....
|
||
|
bytes_left -= bytes_tosend;
|
||
|
data_p += bytes_tosend;
|
||
|
}//while( bytes_left...
|
||
|
breakout:
|
||
|
|
||
|
pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 1 : 0; //bmSNDTOG1 : bmSNDTOG0; //update toggle
|
||
|
return ( rcode); //should be 0 in all cases
|
||
|
}
|
||
|
/* dispatch USB packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
|
||
|
/* If NAK, tries to re-send up to nak_limit times */
|
||
|
/* If nak_limit == 0, do not count NAKs, exit after timeout */
|
||
|
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
|
||
|
|
||
|
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
|
||
|
uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
|
||
|
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
|
||
|
uint8_t tmpdata;
|
||
|
uint8_t rcode = hrSUCCESS;
|
||
|
uint8_t retry_count = 0;
|
||
|
uint16_t nak_count = 0;
|
||
|
|
||
|
while((long)(millis() - timeout) < 0L) {
|
||
|
regWr(rHXFR, (token | ep)); //launch the transfer
|
||
|
rcode = USB_ERROR_TRANSFER_TIMEOUT;
|
||
|
|
||
|
while((long)(millis() - timeout) < 0L) //wait for transfer completion
|
||
|
{
|
||
|
tmpdata = regRd(rHIRQ);
|
||
|
|
||
|
if(tmpdata & bmHXFRDNIRQ) {
|
||
|
regWr(rHIRQ, bmHXFRDNIRQ); //clear the interrupt
|
||
|
rcode = 0x00;
|
||
|
break;
|
||
|
}//if( tmpdata & bmHXFRDNIRQ
|
||
|
|
||
|
}//while ( millis() < timeout
|
||
|
|
||
|
//if (rcode != 0x00) //exit if timeout
|
||
|
// return ( rcode);
|
||
|
|
||
|
rcode = (regRd(rHRSL) & 0x0f); //analyze transfer result
|
||
|
|
||
|
switch(rcode) {
|
||
|
case hrNAK:
|
||
|
nak_count++;
|
||
|
if(nak_limit && (nak_count == nak_limit))
|
||
|
return (rcode);
|
||
|
break;
|
||
|
case hrTIMEOUT:
|
||
|
retry_count++;
|
||
|
if(retry_count == USB_RETRY_LIMIT)
|
||
|
return (rcode);
|
||
|
break;
|
||
|
default:
|
||
|
return (rcode);
|
||
|
}//switch( rcode
|
||
|
|
||
|
}//while( timeout > millis()
|
||
|
return ( rcode);
|
||
|
}
|
||
|
|
||
|
/* USB main task. Performs enumeration/cleanup */
|
||
|
void USB::Task(void) //USB state machine
|
||
|
{
|
||
|
uint8_t rcode;
|
||
|
uint8_t tmpdata;
|
||
|
static unsigned long delay = 0;
|
||
|
//USB_DEVICE_DESCRIPTOR buf;
|
||
|
bool lowspeed = false;
|
||
|
|
||
|
MAX3421E::Task();
|
||
|
|
||
|
tmpdata = getVbusState();
|
||
|
|
||
|
/* modify USB task state if Vbus changed */
|
||
|
switch(tmpdata) {
|
||
|
case SE1: //illegal state
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
|
||
|
lowspeed = false;
|
||
|
break;
|
||
|
case SE0: //disconnected
|
||
|
if((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED)
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
|
||
|
lowspeed = false;
|
||
|
break;
|
||
|
case LSHOST:
|
||
|
|
||
|
lowspeed = true;
|
||
|
//intentional fallthrough
|
||
|
case FSHOST: //attached
|
||
|
if((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) {
|
||
|
delay = millis() + USB_SETTLE_DELAY;
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
|
||
|
}
|
||
|
break;
|
||
|
}// switch( tmpdata
|
||
|
|
||
|
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
|
||
|
if(devConfig[i])
|
||
|
rcode = devConfig[i]->Poll();
|
||
|
|
||
|
switch(usb_task_state) {
|
||
|
case USB_DETACHED_SUBSTATE_INITIALIZE:
|
||
|
init();
|
||
|
|
||
|
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
|
||
|
if(devConfig[i])
|
||
|
rcode = devConfig[i]->Release();
|
||
|
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
|
||
|
break;
|
||
|
case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: //just sit here
|
||
|
break;
|
||
|
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_SETTLE: //settle time for just attached device
|
||
|
if((long)(millis() - delay) >= 0L)
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
|
||
|
else break; // don't fall through
|
||
|
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
|
||
|
regWr(rHCTL, bmBUSRST); //issue bus reset
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
|
||
|
if((regRd(rHCTL) & bmBUSRST) == 0) {
|
||
|
tmpdata = regRd(rMODE) | bmSOFKAENAB; //start SOF generation
|
||
|
regWr(rMODE, tmpdata);
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
|
||
|
//delay = millis() + 20; //20ms wait after reset per USB spec
|
||
|
}
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
|
||
|
if(regRd(rHIRQ) & bmFRAMEIRQ) {
|
||
|
//when first SOF received _and_ 20ms has passed we can continue
|
||
|
/*
|
||
|
if (delay < millis()) //20ms passed
|
||
|
usb_task_state = USB_STATE_CONFIGURING;
|
||
|
*/
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET;
|
||
|
delay = millis() + 20;
|
||
|
}
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_WAIT_RESET:
|
||
|
if((long)(millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING;
|
||
|
else break; // don't fall through
|
||
|
case USB_STATE_CONFIGURING:
|
||
|
|
||
|
//Serial.print("\r\nConf.LS: ");
|
||
|
//Serial.println(lowspeed, HEX);
|
||
|
|
||
|
rcode = Configuring(0, 0, lowspeed);
|
||
|
|
||
|
if(rcode) {
|
||
|
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) {
|
||
|
usb_error = rcode;
|
||
|
usb_task_state = USB_STATE_ERROR;
|
||
|
}
|
||
|
} else
|
||
|
usb_task_state = USB_STATE_RUNNING;
|
||
|
break;
|
||
|
case USB_STATE_RUNNING:
|
||
|
break;
|
||
|
case USB_STATE_ERROR:
|
||
|
//MAX3421E::Init();
|
||
|
break;
|
||
|
} // switch( usb_task_state )
|
||
|
}
|
||
|
|
||
|
uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
|
||
|
//uint8_t buf[12];
|
||
|
uint8_t rcode;
|
||
|
UsbDevice *p0 = NULL, *p = NULL;
|
||
|
|
||
|
// Get pointer to pseudo device with address 0 assigned
|
||
|
p0 = addrPool.GetUsbDevicePtr(0);
|
||
|
|
||
|
if(!p0)
|
||
|
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
|
||
|
|
||
|
if(!p0->epinfo)
|
||
|
return USB_ERROR_EPINFO_IS_NULL;
|
||
|
|
||
|
p0->lowspeed = (lowspeed) ? true : false;
|
||
|
|
||
|
// Allocate new address according to device class
|
||
|
uint8_t bAddress = addrPool.AllocAddress(parent, false, port);
|
||
|
|
||
|
if(!bAddress)
|
||
|
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
|
||
|
|
||
|
p = addrPool.GetUsbDevicePtr(bAddress);
|
||
|
|
||
|
if(!p)
|
||
|
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
|
||
|
|
||
|
p->lowspeed = lowspeed;
|
||
|
|
||
|
// Assign new address to the device
|
||
|
rcode = setAddr(0, 0, bAddress);
|
||
|
|
||
|
if(rcode) {
|
||
|
addrPool.FreeAddress(bAddress);
|
||
|
bAddress = 0;
|
||
|
return rcode;
|
||
|
}
|
||
|
return 0;
|
||
|
};
|
||
|
|
||
|
uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lowspeed) {
|
||
|
//printf("AttemptConfig: parent = %i, port = %i\r\n", parent, port);
|
||
|
uint8_t retries = 0;
|
||
|
|
||
|
again:
|
||
|
uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed);
|
||
|
if(rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) {
|
||
|
if(parent == 0) {
|
||
|
// Send a bus reset on the root interface.
|
||
|
regWr(rHCTL, bmBUSRST); //issue bus reset
|
||
|
delay(102); // delay 102ms, compensate for clock inaccuracy.
|
||
|
} else {
|
||
|
// reset parent port
|
||
|
devConfig[parent]->ResetHubPort(port);
|
||
|
}
|
||
|
} else if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
|
||
|
delay(100);
|
||
|
retries++;
|
||
|
goto again;
|
||
|
} else if(rcode)
|
||
|
return rcode;
|
||
|
|
||
|
rcode = devConfig[driver]->Init(parent, port, lowspeed);
|
||
|
if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
|
||
|
delay(100);
|
||
|
retries++;
|
||
|
goto again;
|
||
|
}
|
||
|
if(rcode) {
|
||
|
// Issue a bus reset, because the device may be in a limbo state
|
||
|
if(parent == 0) {
|
||
|
// Send a bus reset on the root interface.
|
||
|
regWr(rHCTL, bmBUSRST); //issue bus reset
|
||
|
delay(102); // delay 102ms, compensate for clock inaccuracy.
|
||
|
} else {
|
||
|
// reset parent port
|
||
|
devConfig[parent]->ResetHubPort(port);
|
||
|
}
|
||
|
}
|
||
|
return rcode;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is broken. We need to enumerate differently.
|
||
|
* It causes major problems with several devices if detected in an unexpected order.
|
||
|
*
|
||
|
*
|
||
|
* Oleg - I wouldn't do anything before the newly connected device is considered sane.
|
||
|
* i.e.(delays are not indicated for brevity):
|
||
|
* 1. reset
|
||
|
* 2. GetDevDescr();
|
||
|
* 3a. If ACK, continue with allocating address, addressing, etc.
|
||
|
* 3b. Else reset again, count resets, stop at some number (5?).
|
||
|
* 4. When max.number of resets is reached, toggle power/fail
|
||
|
* If desired, this could be modified by performing two resets with GetDevDescr() in the middle - however, from my experience, if a device answers to GDD()
|
||
|
* it doesn't need to be reset again
|
||
|
* New steps proposal:
|
||
|
* 1: get address pool instance. exit on fail
|
||
|
* 2: pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf). exit on fail.
|
||
|
* 3: bus reset, 100ms delay
|
||
|
* 4: set address
|
||
|
* 5: pUsb->setEpInfoEntry(bAddress, 1, epInfo), exit on fail
|
||
|
* 6: while (configurations) {
|
||
|
* for(each configuration) {
|
||
|
* for (each driver) {
|
||
|
* 6a: Ask device if it likes configuration. Returns 0 on OK.
|
||
|
* If successful, the driver configured device.
|
||
|
* The driver now owns the endpoints, and takes over managing them.
|
||
|
* The following will need codes:
|
||
|
* Everything went well, instance consumed, exit with success.
|
||
|
* Instance already in use, ignore it, try next driver.
|
||
|
* Not a supported device, ignore it, try next driver.
|
||
|
* Not a supported configuration for this device, ignore it, try next driver.
|
||
|
* Could not configure device, fatal, exit with fail.
|
||
|
* }
|
||
|
* }
|
||
|
* }
|
||
|
* 7: for(each driver) {
|
||
|
* 7a: Ask device if it knows this VID/PID. Acts exactly like 6a, but using VID/PID
|
||
|
* 8: if we get here, no driver likes the device plugged in, so exit failure.
|
||
|
*
|
||
|
*/
|
||
|
uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
|
||
|
//uint8_t bAddress = 0;
|
||
|
//printf("Configuring: parent = %i, port = %i\r\n", parent, port);
|
||
|
uint8_t devConfigIndex;
|
||
|
uint8_t rcode = 0;
|
||
|
uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)];
|
||
|
USB_DEVICE_DESCRIPTOR *udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR *>(buf);
|
||
|
UsbDevice *p = NULL;
|
||
|
EpInfo *oldep_ptr = NULL;
|
||
|
EpInfo epInfo;
|
||
|
|
||
|
epInfo.epAddr = 0;
|
||
|
epInfo.maxPktSize = 8;
|
||
|
epInfo.epAttribs = 0;
|
||
|
epInfo.bmNakPower = USB_NAK_MAX_POWER;
|
||
|
|
||
|
//delay(2000);
|
||
|
AddressPool &addrPool = GetAddressPool();
|
||
|
// Get pointer to pseudo device with address 0 assigned
|
||
|
p = addrPool.GetUsbDevicePtr(0);
|
||
|
if(!p) {
|
||
|
//printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n");
|
||
|
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
|
||
|
}
|
||
|
|
||
|
// Save old pointer to EP_RECORD of address 0
|
||
|
oldep_ptr = p->epinfo;
|
||
|
|
||
|
// Temporary assign new pointer to epInfo to p->epinfo in order to
|
||
|
// avoid toggle inconsistence
|
||
|
|
||
|
p->epinfo = &epInfo;
|
||
|
|
||
|
p->lowspeed = lowspeed;
|
||
|
// Get device descriptor
|
||
|
rcode = getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*)buf);
|
||
|
|
||
|
// Restore p->epinfo
|
||
|
p->epinfo = oldep_ptr;
|
||
|
|
||
|
if(rcode) {
|
||
|
//printf("Configuring error: Can't get USB_DEVICE_DESCRIPTOR\r\n");
|
||
|
return rcode;
|
||
|
}
|
||
|
|
||
|
// to-do?
|
||
|
// Allocate new address according to device class
|
||
|
//bAddress = addrPool.AllocAddress(parent, false, port);
|
||
|
|
||
|
uint16_t vid = udd->idVendor;
|
||
|
uint16_t pid = udd->idProduct;
|
||
|
uint8_t klass = udd->bDeviceClass;
|
||
|
uint8_t subklass = udd->bDeviceSubClass;
|
||
|
// Attempt to configure if VID/PID or device class matches with a driver
|
||
|
// Qualify with subclass too.
|
||
|
//
|
||
|
// VID/PID & class tests default to false for drivers not yet ported
|
||
|
// subclass defaults to true, so you don't have to define it if you don't have to.
|
||
|
//
|
||
|
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
|
||
|
if(!devConfig[devConfigIndex]) continue; // no driver
|
||
|
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
|
||
|
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) {
|
||
|
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
|
||
|
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(devConfigIndex < USB_NUMDEVICES) {
|
||
|
return rcode;
|
||
|
}
|
||
|
|
||
|
|
||
|
// blindly attempt to configure
|
||
|
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
|
||
|
if(!devConfig[devConfigIndex]) continue;
|
||
|
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
|
||
|
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above
|
||
|
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
|
||
|
|
||
|
//printf("ERROR ENUMERATING %2.2x\r\n", rcode);
|
||
|
if(!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) {
|
||
|
// in case of an error dev_index should be reset to 0
|
||
|
// in order to start from the very beginning the
|
||
|
// next time the program gets here
|
||
|
//if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE)
|
||
|
// devConfigIndex = 0;
|
||
|
return rcode;
|
||
|
}
|
||
|
}
|
||
|
// if we get here that means that the device class is not supported by any of registered classes
|
||
|
rcode = DefaultAddressing(parent, port, lowspeed);
|
||
|
|
||
|
return rcode;
|
||
|
}
|
||
|
|
||
|
uint8_t USB::ReleaseDevice(uint8_t addr) {
|
||
|
if(!addr)
|
||
|
return 0;
|
||
|
|
||
|
for(uint8_t i = 0; i < USB_NUMDEVICES; i++) {
|
||
|
if(!devConfig[i]) continue;
|
||
|
if(devConfig[i]->GetAddress() == addr)
|
||
|
return devConfig[i]->Release();
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if 1 //!defined(USB_METHODS_INLINE)
|
||
|
//get device descriptor
|
||
|
|
||
|
uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) {
|
||
|
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, NULL));
|
||
|
}
|
||
|
//get configuration descriptor
|
||
|
|
||
|
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) {
|
||
|
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, NULL));
|
||
|
}
|
||
|
|
||
|
/* Requests Configuration Descriptor. Sends two Get Conf Descr requests. The first one gets the total length of all descriptors, then the second one requests this
|
||
|
total length. The length of the first request can be shorter ( 4 bytes ), however, there are devices which won't work unless this length is set to 9 */
|
||
|
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p) {
|
||
|
const uint8_t bufSize = 64;
|
||
|
uint8_t buf[bufSize];
|
||
|
USB_CONFIGURATION_DESCRIPTOR *ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR *>(buf);
|
||
|
|
||
|
uint8_t ret = getConfDescr(addr, ep, 9, conf, buf);
|
||
|
|
||
|
if(ret)
|
||
|
return ret;
|
||
|
|
||
|
uint16_t total = ucd->wTotalLength;
|
||
|
|
||
|
//USBTRACE2("\r\ntotal conf.size:", total);
|
||
|
|
||
|
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p));
|
||
|
}
|
||
|
|
||
|
//get string descriptor
|
||
|
|
||
|
uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, uint16_t langid, uint8_t* dataptr) {
|
||
|
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, NULL));
|
||
|
}
|
||
|
//set address
|
||
|
|
||
|
uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) {
|
||
|
uint8_t rcode = ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL);
|
||
|
//delay(2); //per USB 2.0 sect.9.2.6.3
|
||
|
delay(300); // Older spec says you should wait at least 200ms
|
||
|
return rcode;
|
||
|
//return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
|
||
|
}
|
||
|
//set configuration
|
||
|
|
||
|
uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) {
|
||
|
return ( ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
|
||
|
}
|
||
|
|
||
|
#endif // defined(USB_METHODS_INLINE)
|