poskusil dodat iterativno metodo. nrw kljub poenostavitvi nestabilna
parent
3f7a3e7945
commit
0104f356e1
102
s2eps.py
102
s2eps.py
|
@ -1,8 +1,10 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
import numpy as np
|
||||
from numpy import pi
|
||||
from operator import itemgetter
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import fsolve
|
||||
|
||||
def s2p_to_narray(file):
|
||||
""" prebere s2p file v narray. STOLPCI --> VRSTICE!!! """
|
||||
|
@ -20,28 +22,95 @@ def narray_to_s(narray):
|
|||
s['f'] = narray[0,:]
|
||||
return s
|
||||
|
||||
def s_to_eps(s, L):
|
||||
def s_to_eps(s, L,fc):
|
||||
""" izracunam eps in tand iz s parametrov in dolzin """
|
||||
s11, s21, s12, s22, f = itemgetter(*s.keys())(s)
|
||||
c = 299792458 #hitrost svetlobe v vakuumu.
|
||||
|
||||
X = (s11**2 - s21**2 + 1)/2/s11
|
||||
G = X + np.sqrt(X**2 - 1)
|
||||
Gm = X - np.sqrt(X**2 - 1)
|
||||
K = (s11**2 - s21**2 + 1)/2/s11
|
||||
G = K + np.sqrt(K**2 - 1)
|
||||
Gm = K - np.sqrt(K**2 - 1)
|
||||
G[np.abs(G) > 1] = Gm[np.abs(G) > 1]
|
||||
P = (s11 + s21 - G)/(1-(s11+s21)*G)
|
||||
Lambda2 = - (1/2/np.pi/L * np.log(1/P))**2 #izmisli resitev za korene kompleksnega logaritma
|
||||
# argument korena mora biti 2*pi*n, kjer je n=L/lambda_g
|
||||
T = (s11 + s21 - G)/(1-(s11+s21)*G)
|
||||
Lambda2 = (1j/2/pi/L * np.log(T))**2
|
||||
l0g2 = ( (f/c)**2 - (fc/c)**2 )**-1
|
||||
print(l0g2*Lambda2)
|
||||
test_plot(f, np.abs(l0g2*Lambda2))
|
||||
|
||||
return 0
|
||||
|
||||
#Nicolson-Ross-Weir metoda -> NUMERICNO NESTABILNA
|
||||
#def s_to_eps(s, L):
|
||||
# """ izracunam eps in tand iz s parametrov in dolzin """
|
||||
# s11, s21, s12, s22, f = itemgetter(*s.keys())(s)
|
||||
#
|
||||
# X = (s11**2 - s21**2 + 1)/2/s11
|
||||
# G = X + np.sqrt(X**2 - 1)
|
||||
# Gm = X - np.sqrt(X**2 - 1)
|
||||
# G[np.abs(G) > 1] = Gm[np.abs(G) > 1]
|
||||
# P = (s11 + s21 - G)/(1-(s11+s21)*G)
|
||||
# Lambda2 = - (1/2/np.pi/L * np.log(1/P))**2 #izmisli resitev za korene kompleksnega logaritma
|
||||
# # argument korena mora biti 2*pi*n, kjer je n=L/lambda_g
|
||||
#
|
||||
# return measured_group_delay(f,P)
|
||||
#
|
||||
#
|
||||
#naumi kako napisat sistem nelinearnih enacb in na kaj jih resevat!
|
||||
#def iterative(s,fc,L,Lair):
|
||||
# s11, s21, s12, s22, f = itemgetter(*s.keys())(s)
|
||||
# c = 299792458 #hitrost svetlobe v vakuumu.
|
||||
#
|
||||
# p0 = 1j*np.sqrt( (2*np.pi*f/c)**2-(2*np.pi*fc/c)**2)
|
||||
# z = lambda p,L: np.exp(-p*L)
|
||||
# G = lambda p: (p0-p)/(p0+p) #predpostavim permeabilnost = 1
|
||||
#
|
||||
# f1 = lambda p,L,Lair: np.abs(s21) - np.abs(z(p,L)*(1-G(p)**2)/(1-z(p,L)**2*G(p)**2))
|
||||
# f2 = lambda p,L,Lair: np.abs(s11) - np.abs(G(p)*(1-z(p,L)**2)/(1-z(p,L)**2*G(p)**2))
|
||||
# f3 = lambda p,L,Lair: (s21*s12-s11*s22)-np.exp(-p0*(Lair-L))*(z(p,L)**2-G(p)**2)/(1-z(p,L)**2*G(p)**2)
|
||||
#
|
||||
# p,l,l_air = fsolve([f1,f2,f3],[p0,L,Lair])
|
||||
#
|
||||
# return p,l,l_air
|
||||
#
|
||||
|
||||
def sistem_enacb(s, fc, beta, L):
|
||||
""" sistem enacb za iterativno iskanje dielektricnosti
|
||||
predpostavim mu=1
|
||||
|
||||
X = [g, eps, T, G]"""
|
||||
s11, s21, s12, s22, f = itemgetter(*s.keys())(s)
|
||||
c = 299792458 #hitrost svetlobe v vakuumu.
|
||||
|
||||
g0 = 2j*pi*f/c*np.sqrt(1-(fc/f)**2)
|
||||
|
||||
# desne strani enacb
|
||||
T = lambda g: np.exp(-g*L)
|
||||
g = lambda eps: 2j*pi*f/c*np.sqrt(eps-(fc/f)**2) # g
|
||||
G = lambda g: (g0-g)/(g0+g)
|
||||
|
||||
# pomozne funkcije za zadnjo enacbo
|
||||
h1 = lambda T,G: T*(1-G**2)/(1-T**2*G**2)
|
||||
h2 = lambda T,G: G*(1-T**2)/(1-T**2*G**2)
|
||||
|
||||
|
||||
f1 = lambda X: X[2]-T(X[0]) # T
|
||||
f2 = lambda X: X[0]-g(X[1]) # g
|
||||
f3 = lambda X: X[3]-G(X[0]) #G
|
||||
f4 = lambda X: s21+beta*s11-h1(X[2],X[3])-beta*h2(X[2],X[3])
|
||||
|
||||
return lambda x: [f1(x),f2(x),f3(x),f4(x)]
|
||||
|
||||
def iterative(s, L, fc):
|
||||
c = 299792458 #hitrost svetlobe v vakuumu.
|
||||
f = s['f']
|
||||
g0 = 2j*pi*f/c*np.sqrt(1-(fc/f)**2)
|
||||
f = sistem_enacb(s, fc, 0.5, L)
|
||||
return f
|
||||
|
||||
return measured_group_delay(f,P)
|
||||
|
||||
def measured_group_delay(f, P):
|
||||
phase = np.unwrap(np.angle(P))
|
||||
test_plot(f,phase)
|
||||
# zgladim fazo s polinomsko aproksimacijo druge stopnje
|
||||
#ph = np.polyfit(f,phase,2)
|
||||
#print(ph)
|
||||
#faza = ph[2]+ph[1]*f+ph[0]*f**2
|
||||
#test_plot(f,faza-phase)
|
||||
return -np.diff(phase)/np.diff(f)/2/np.pi
|
||||
|
||||
def test_plot(x,*args):
|
||||
|
@ -49,8 +118,9 @@ def test_plot(x,*args):
|
|||
plt.plot(x,y)
|
||||
plt.show()
|
||||
|
||||
a=s2p_to_narray('20.s2p')
|
||||
### testni klici
|
||||
a=s2p_to_narray('teflon.s2p')
|
||||
b = narray_to_s(a)
|
||||
locals().update(b)
|
||||
c= s_to_eps(b,6e-2)
|
||||
test_plot(f[:-1],c)
|
||||
print(iterative(b,6e-2,6.557e9))
|
||||
#c = s_to_eps(b, 6e-2,6.557e9)
|
||||
|
|
Loading…
Reference in New Issue