Poskusi faznega sukalnika z negativnim lomnim kolicnikom
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
2.9 KiB

using LinearAlgebra
using Plots
function unit_cell(Mse::Array{Complex{Float64},2},
Mtl::Array{Complex{Float64},2},
Msh::Array{Complex{Float64},2})
# izracuna ABCD parametre ene π celice sukalnika
# Mse - ABCD matrika serijske impedance
# Mtl - ABCD matrika linije
# Msh - ABCD matrika vzporedne impedance (shunt)
Mse * Mtl * Msh * Mtl * Mse
end
function AtoS(A::Array{Complex{Float64},2})
# konvertira ABCD matriko v S matriko
imenovalec = A[1,1] + A[1,2]/50. + A[2,1]*50. + A[2,2]
S11 = A[1,1] + A[1,2]/50. - A[2,1]*50. - A[2,2]
S22 = -A[1,1] + A[1,2]/50. - A[2,1]*50. + A[2,2]
S12 = 2(A[1,1]*A[2,2] - A[1,2]*A[2,1])
S21 = 2
[S11 S12; S21 S22]/imenovalec
end
struct varactor
R::Float64
L::Float64
C::Float64
end
function Zd(d::varactor, f::Float64)
d.R + im*2*pi*f*d.L - im/2/pi/f/d.C
end
function Yin(Z::Complex{Float64}, β::Float64, l::Float64)
# admitanca l dolge linije zakljucene na Z
# karakteristicna impedanca linije je 50/√2 = 35Ω
2/50. * (50/2 + im*Z*tan(β*l)) / (Z+im*50/2*tan(β*l))
end
function Aseries(Z::Complex{Float64})
[1. Z; 0. 1.]
end
function Atline(β::Float64, l::Float64)
[cos(β*l) im*50*sin(β*l); im*sin(β*l)/50. cos(β*l)]
end
function Ashunt(Y::Complex{Float64})
[1. 0.; Y 1.]
end
struct model
l1::Float64
ϵ1::Float64
l2::Float64
ϵ2::Float64
end
function response1(f::Float64, m::model, d::varactor)
# izracunaj vse vmesne velicine in vrni ABCD parametre
Z = Zd(d, f)
Mse = Aseries(Z)
Mtr = Atline(beta(f, m.ϵ1), m.l1)
Y = Yin(Z, beta(f, m.ϵ2), m.l2)
Msh = Ashunt(Y)
unit_cell(Mse,Mtr,Msh)
end
function S2row(S::Array{Complex{Float64},2})
mag = 10*log10.(abs2.(S))
ang = angle.(S)
[mag[1,1] ang[1,1] mag[2,1] ang[2,1] mag[1,2] ang[1,2] mag[2,2] ang[2,2]]
end
function celo_obmocje(f::Array{Float64,1}, m::model, d::varactor)
n = length(f)
out = Array{Float64,2}(undef, n, 9)
for (i, fi) in enumerate(f)
abcd = response1(fi,m,d)
S = AtoS(abcd)
out[i,1] = fi
out[i,2:end] = S2row(S)
end
out
end
function beta(f::Float64, ϵ::Float64)
2*pi*f*ϵ/3e8
end
#dioda = varactor(.5, 0.6e-9, 1.3e-12)
#m = model(2e-3, 2.788, 18e-3, 2.937)
#f = collect(range(1e9, 4e9, length=801))
#
#@time test = celo_obmocje(f, m, dioda)
#p = plot(test[:,1], test[:,2],label="S11")
#plot!(p, test[:,1], test[:,4],label="S21")
function cela_simulacija(f, C, l; mapa="./", R=.5, L=.6e-9)
for l1 in l
p11 = plot(title="S @ l = $l1 mm",xlabel="Frekvenca (GHz)",
ylabel="S11 (dB)")
p21 = plot(title="S @ l = $l1 mm",xlabel="Frekvenca (GHz)",
ylabel="S21 (dB)")
m = model(l1*1e-3, 2.8504, 18e-3, 2.992)
for Cd in C
d = varactor(R, L, Cd*1e-12)
s2p = celo_obmocje(f, m, d)
plot!(p11, s2p[:,1], s2p[:,2],label="$Cd pF")
plot!(p21, s2p[:,1], s2p[:,4],label="$Cd pF")
end
savefig(p11, "s11-$l1.pdf")
savefig(p21, "s21-$l1.pdf")
end
end
f = collect(range(1e9, 4e9, length=801))
l = range(2.,10., step=2.)
C = [8., 4., 2.]
cela_simulacija(f,C,l)