Added solutions N = 150-200
parent
63a76b01f8
commit
56f12e1fd2
|
@ -0,0 +1,24 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from fractions import Fraction
|
||||
|
||||
def cut(state, i):
|
||||
return state[:i] + (state[i]-1,) + \
|
||||
tuple(n + 1 for n in state[i+1:])
|
||||
|
||||
def search(state=(1, 0, 0, 0, 0), cache={}):
|
||||
if state in cache:
|
||||
return cache[state]
|
||||
if sum(state) == state[-1] == 1:
|
||||
return 1
|
||||
r = 0
|
||||
for i, p in enumerate(state):
|
||||
if not p:
|
||||
continue
|
||||
r += Fraction(p, sum(state)) * \
|
||||
search(cut(state, i), cache)
|
||||
r += (sum(state) == 1)
|
||||
cache[state] = r
|
||||
return r
|
||||
|
||||
print(float(round(search(), 6) - 2))
|
|
@ -0,0 +1,33 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
def calc(n, dig=1, verbose=False):
|
||||
r = 0
|
||||
for place in range(len(str(n))):
|
||||
a = (n - (n % 10**(place+1))) // 10
|
||||
b = 0
|
||||
d = int(str(n)[-place-1])
|
||||
if d == dig:
|
||||
b = (n % 10**place) + 1
|
||||
elif d > dig:
|
||||
b = 10**place
|
||||
if verbose:
|
||||
print(place, a, b, a+b)
|
||||
r += a + b
|
||||
return r
|
||||
|
||||
def search(dig, pw=2, num=0):
|
||||
if pw == 0:
|
||||
return sum(num + d for d in range(10) if num+d == calc(num+d, dig))
|
||||
r = 0
|
||||
for d in range(10):
|
||||
newnum = num + d * 10**pw
|
||||
maxnum = num + (d + 1) * 10**pw - 1
|
||||
if maxnum < calc(newnum, dig):
|
||||
continue
|
||||
if calc(maxnum, dig) < newnum:
|
||||
continue
|
||||
r += search(dig, pw-1, newnum)
|
||||
return r
|
||||
|
||||
depth = 10
|
||||
print(sum(search(d, depth) for d in range(1, 10)))
|
|
@ -0,0 +1,18 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from math import factorial
|
||||
|
||||
def bin(n, k):
|
||||
if k > n:
|
||||
return 0
|
||||
return factorial(n) // (factorial(n-k)*factorial(k))
|
||||
|
||||
def strings(k):
|
||||
k -= 2
|
||||
s = 0
|
||||
for inter in range(25):
|
||||
for i in range(0,k+1):
|
||||
s += (25-inter) * 2**i * bin(inter, i) * bin(24-inter, k-i)
|
||||
return s
|
||||
|
||||
print(max((2**k - k - 1) * bin(26, k) for k in range(2, 27)))
|
|
@ -0,0 +1,41 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from math import log
|
||||
|
||||
digs = 5
|
||||
mask = 10**digs
|
||||
|
||||
sieve = [1] * mask
|
||||
for n in range(1, mask):
|
||||
if n%2 and n%5:
|
||||
sieve[n] = (sieve[n-1] * n) % mask
|
||||
else:
|
||||
sieve[n] = sieve[n-1]
|
||||
|
||||
def numf(n, N):
|
||||
return sum(N // (n**pw) for pw in range(1, int(log(N) / log(n))+1))
|
||||
|
||||
def numof2(N):
|
||||
return numf(2, N) - numf(5, N)
|
||||
|
||||
def roots(N):
|
||||
a = 1
|
||||
while a <= N:
|
||||
b = 1
|
||||
while a * b <= N:
|
||||
yield a * b
|
||||
b *= 2
|
||||
a *= 5
|
||||
|
||||
def main(N):
|
||||
r = 1
|
||||
p = sieve[-1]
|
||||
for root in roots(N):
|
||||
d = N // root
|
||||
r *= pow(p, d // mask, mask)
|
||||
r *= sieve[d % mask]
|
||||
r %= mask
|
||||
r *= pow(2, numof2(N), mask)
|
||||
return r % mask
|
||||
|
||||
print(main(10**12))
|
|
@ -0,0 +1,30 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from itertools import product
|
||||
from math import factorial
|
||||
|
||||
def bin(n, k):
|
||||
return factorial(n) // (factorial(n-k) * factorial(k))
|
||||
|
||||
digs = list(map(str, range(10))) + list("ABCDEF")
|
||||
cache = {val : {0 : all(val)} for val in product([True, False], repeat=3)}
|
||||
|
||||
def f(i, flags=(False, False, False), fst=1):
|
||||
if i in cache[flags] and (not fst or not i):
|
||||
return cache[flags][i]
|
||||
r = 13 * f(i-1, flags, 0)
|
||||
r += sum(f(i-1, flags[:n] + (True,) + flags[n+1:], 0) for n in range(fst, 3))
|
||||
if not fst:
|
||||
cache[flags][i] = r
|
||||
return r
|
||||
|
||||
def dec2hex(n):
|
||||
r = str()
|
||||
while n:
|
||||
r = r + digs[n % 16]
|
||||
n //= 16
|
||||
return r[::-1]
|
||||
|
||||
r = sum(f(i) for i in range(1, 17))
|
||||
|
||||
print(dec2hex(r))
|
|
@ -0,0 +1,12 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
cache = [[{0 : 1} for b in range(10)] for a in range(10)]
|
||||
|
||||
def f(i, a=0, b=0, fst=1):
|
||||
if i in cache[a][b]:
|
||||
return cache[a][b][i]
|
||||
r = sum((f(i-1, b, n, 0) for n in range(fst, 10-a-b)))
|
||||
cache[a][b][i] = r
|
||||
return r
|
||||
|
||||
print(f(20))
|
|
@ -0,0 +1,48 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from fractions import Fraction
|
||||
from itertools import combinations
|
||||
|
||||
def solve(line1, line2):
|
||||
x1, y1 = line1[0][0] - line1[1][0], line1[0][1] - line1[1][1]
|
||||
x2, y2 = -line2[0][0] + line2[1][0], -line2[0][1] + line2[1][1]
|
||||
xv, yv = line2[1][0] - line1[1][0], line2[1][1] - line1[1][1]
|
||||
det = x1*y2 - y1*x2
|
||||
if det == 0:
|
||||
return None
|
||||
p = det // abs(det)
|
||||
det = abs(det)
|
||||
n = p * (xv*y2 - yv*x2)
|
||||
if not (0 < n < det) or not (0 < p * (x1*yv - y1*xv) < det):
|
||||
return None
|
||||
return (line1[1][0] + Fraction(n, det) * x1, line1[1][1] + Fraction(n, det) * y1)
|
||||
|
||||
l1 = (27, 44), (12, 32)
|
||||
l2 = (46, 53), (17, 62)
|
||||
l3 = (46, 70), (22, 40)
|
||||
|
||||
|
||||
def blum(n):
|
||||
s = 290797
|
||||
for i in range(n):
|
||||
s = pow(s, 2, 50515093)
|
||||
yield s % 500
|
||||
|
||||
N = 5000
|
||||
nums = list(blum(N*4))
|
||||
lines = []
|
||||
|
||||
for i in range(0, len(nums)-3, 4):
|
||||
line = (nums[i], nums[i+1]), (nums[i+2], nums[i+3])
|
||||
lines.append(line)
|
||||
|
||||
points = []
|
||||
|
||||
for a, b in combinations(lines, 2):
|
||||
p = solve(a, b)
|
||||
if p == None:
|
||||
continue
|
||||
points.append(p)
|
||||
|
||||
|
||||
print(len(set(points)))
|
|
@ -0,0 +1,22 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
def search(i, k, fst, dig=None, r=0, num=str()):
|
||||
if dig == None:
|
||||
dig = fst
|
||||
if i == 0:
|
||||
return False
|
||||
n = k*dig + r
|
||||
if n < 10 and fst == n and dig != 0:
|
||||
return str(dig) + num
|
||||
return search(i-1, k, fst, n%10, n//10, str(dig) + num)
|
||||
|
||||
places = 100
|
||||
s = 0
|
||||
for k in range(1, 10):
|
||||
for dig in range(1, 10):
|
||||
n = search(places, k, dig)
|
||||
if n:
|
||||
r = places // len(n)
|
||||
for i in range((1 + (len(n)==1)), r+1):
|
||||
s += int(i*n) % 10**5
|
||||
print(s % 10**5)
|
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from math import ceil
|
||||
|
||||
digs = 20
|
||||
ln = 9**2 * digs + 1
|
||||
mod = 10**9
|
||||
|
||||
|
||||
sums = [0] * ln
|
||||
count = [1] + [0] * (ln - 1)
|
||||
|
||||
for pw in range(digs):
|
||||
for dsum in range(9**2 * pw, -1, -1):
|
||||
for dig in range(1, 10):
|
||||
sums[dsum + dig**2] += dig * 10**pw * count[dsum] + sums[dsum]
|
||||
count[dsum + dig**2] += count[dsum]
|
||||
|
||||
|
||||
print(sum(sums[i**2] for i in range(int(ceil(ln**0.5)))) % mod)
|
|
@ -0,0 +1,9 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from math import sqrt
|
||||
|
||||
b = 10**6
|
||||
t = 0
|
||||
for n in range(1, b//4):
|
||||
t += int(sqrt(b + n**2) - n)//2
|
||||
print(t)
|
|
@ -0,0 +1,18 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
def divisors(n):
|
||||
sieve = [1]*n
|
||||
for p in range(2, n):
|
||||
if sieve[p] > 1:
|
||||
continue
|
||||
pw = 1
|
||||
while p**pw < n:
|
||||
for i in range(p**pw, n, p**pw):
|
||||
sieve[i] *= (pw+1)
|
||||
sieve[i] //= pw
|
||||
pw += 1
|
||||
return sieve
|
||||
|
||||
n = 10**6 // 4
|
||||
divs = divisors(n+1)
|
||||
print(len([0 for i in divs if 0 < i//2 <= 10]))
|
|
@ -0,0 +1,42 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
conds = ["any", "both", "nine"]
|
||||
|
||||
cache = {c : {n : dict() for n in range(10)} for c in conds}
|
||||
|
||||
def f(n, i, contains = "both"):
|
||||
if i in cache[contains][n]:
|
||||
return cache[contains][n][i]
|
||||
|
||||
if i == 1:
|
||||
if contains == "both":
|
||||
r = 0
|
||||
elif contains == "any":
|
||||
r = 1
|
||||
elif contains == "nine":
|
||||
r = (n == 9)
|
||||
cache[contains][n][i] = r
|
||||
return r
|
||||
|
||||
g = lambda x,y: f(x, i-1, y)
|
||||
|
||||
flag = contains
|
||||
|
||||
if n == 0 or n == 9:
|
||||
if contains == "both":
|
||||
flag = "nine"
|
||||
elif contains == "nine" and n == 9:
|
||||
flag = "any"
|
||||
r = g(1, flag)
|
||||
else:
|
||||
r = g(n-1, contains) + g(n+1, contains)
|
||||
|
||||
cache[contains][n][i] = r
|
||||
return r
|
||||
|
||||
places = 40
|
||||
s = 0
|
||||
|
||||
for p in range(1, places+1):
|
||||
s += sum(f(n, p) for n in range(1,10))
|
||||
print(s)
|
|
@ -0,0 +1,13 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
lim = 10**7
|
||||
divcount = [1]*lim
|
||||
count = 0
|
||||
|
||||
for n in range(2, lim):
|
||||
for i in range(n, lim, n):
|
||||
divcount[i] += 1
|
||||
if divcount[n] == divcount[n-1]:
|
||||
count += 1
|
||||
|
||||
print(count)
|
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
def primes(n):
|
||||
count = 0
|
||||
sieve = [False]*n
|
||||
for p in range(2, n):
|
||||
if sieve[p]:
|
||||
continue
|
||||
for i in range(p**2, n, p):
|
||||
sieve[i] = True
|
||||
np = 2*p
|
||||
for p2 in range(2,p+1):
|
||||
if np >= n:
|
||||
break
|
||||
if not sieve[p2]:
|
||||
count += 1
|
||||
np += p
|
||||
return count
|
||||
|
||||
print(primes(10**8))
|
|
@ -0,0 +1,11 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
a = 1777
|
||||
k = 1855
|
||||
|
||||
n = 1
|
||||
|
||||
for i in range(k):
|
||||
n = pow(a, n, 10**8)
|
||||
|
||||
print(n)
|
|
@ -0,0 +1,26 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from math import factorial
|
||||
|
||||
def bin(n, k):
|
||||
return factorial(n) // (factorial(n-k) * factorial(k))
|
||||
|
||||
def late(n):
|
||||
return 3**n - 2**n - 2**(n-1) * n
|
||||
|
||||
def absent2(n):
|
||||
if n < 3:
|
||||
return 0
|
||||
middle = (n-3) * 2**(n-4) - sum(2**(n-4-i) * absent(i) for i in range(n-3))
|
||||
left = sum(2**(n-4-i) * (i * 2**(i-1) - absent2(i)) for i in range(n-3))
|
||||
right = (n-3) * 2**(n-4) + sum((n-3-i) * 2**(n-4-i) * (2**(i-1) - absent(i-1)) for i in range(1, n-3))
|
||||
return right + left + middle
|
||||
|
||||
def absent(n):
|
||||
if n < 3:
|
||||
return 0
|
||||
return 2**(n-3) + (n-3) * 2**(n-4) - sum(2**(n-4-i) * absent(i) for i in range(n-3))
|
||||
|
||||
n = 30
|
||||
|
||||
print(int(3**n - late(n) - absent(n) - absent2(n)))
|
|
@ -0,0 +1,25 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
def primes(n):
|
||||
sieve = [False] * n
|
||||
yield 2
|
||||
for p in range(3, n, 2):
|
||||
if sieve[p]:
|
||||
continue
|
||||
for i in range(p**2, n, 2*p):
|
||||
sieve[i] = True
|
||||
yield p
|
||||
|
||||
def search(i=0, n=1, sign=1):
|
||||
r = 0
|
||||
while squares[i] * n <= N:
|
||||
m = n * squares[i]
|
||||
r += sign * (N // m)
|
||||
r += search(i+1, m, sign * (-1))
|
||||
i += 1
|
||||
return r
|
||||
|
||||
N = 2**50
|
||||
squares = [p**2 for p in primes(2**25)] + [N+1]
|
||||
|
||||
print(N - search())
|
Loading…
Reference in New Issue