project-euler/144_reflections_of_laser.py

72 lines
1.5 KiB
Python
Raw Normal View History

2023-03-26 17:21:44 +02:00
#!/usr/bin/env python
from math import sqrt, pi
import matplotlib.pyplot as plt
import numpy as np
class Ellipse:
def __init__(self, a, b):
self.a = float(a)
self.b = float(b)
def normal(self, vec):
x, y = vec
return norm([self.b**2 * x, self.a**2 * y])
def quadratic(a, b, c):
D = b**2 - 4*a*c
if D < 0:
return False
r1 = (-b + sqrt(D)) / (2*a)
r2 = (-b - sqrt(D)) / (2*a)
return r1, r2
def norm(v):
l = sqrt(sum(x**2 for x in v))
return np.array([x/l for x in v])
def intersections(ellipse, point, dir):
m = dir[1] / dir[0]
yint = point[1] - point[0]*m
a = ellipse.a**2 * m**2 + ellipse.b**2
b = 2 * ellipse.a**2 * m * yint
c = ellipse.a**2 * (yint**2 - ellipse.b**2)
x1, x2 = quadratic(a, b, c)
y1, y2 = m*x1 + yint, m*x2 + yint
return np.array([x1, y1]), np.array([x2, y2])
def reflect(ellipse, A, B):
point = B
dir = B - A
n = ellipse.normal(point)
ref = 2 * (n.dot(dir) * n - dir) + dir
ps = intersections(ellipse, point, ref)
return max(ps, key=lambda v: (B-v).dot(B-v))
def plot_ellipse(ellipse):
t = np.linspace(0, 2*pi, 100)
plt.plot(ellipse.a*np.cos(t), ellipse.b*np.sin(t))
ellipse = Ellipse(5, 10)
A = np.array([0.0, 10.1])
B = np.array([1.4, -9.6])
x = 0.01
plt.axis('equal')
plot_ellipse(ellipse)
count = 0
while not (-x <= B[0] <= x and B[1] > 0):
plt.plot(*zip(A, B))
A, B = B, reflect(ellipse, A, B)
count += 1
plt.show()
print(count)