collaborative_capacitive/sc/collaborative_capacative.scd

141 lines
5.1 KiB
Plaintext

/*RUN*/
//supercollider file for spellcaster
s.options.numInputBusChannels = 4;
s.options.numOutputBusChannels = 4;
OSCFunc.trace(true); // Turn posting on
OSCFunc.trace(false); // Turn posting off
//s.boot;
//(
s.waitForBoot{
///////////////////////////////////////////////////////////////////////////
// set path for sample location and make dictionary of subdirectories
//~samplepath = thisProcess.nowExecutingPath.dirname ++ "/samples";
~samplepath = "/home/rizoma/pifcamp2023/sc/samples"; // CHANGE THIS TO YOUR OWN PATH
~smp = Dictionary.new;
PathName(~samplepath).entries.do{
arg subfolder;
~smp.add(
subfolder.folderName.asSymbol ->
Array.fill(
subfolder.entries.size,
{ arg i; Buffer.read(s, subfolder.entries[i].fullPath).normalize;}
)
);
};
// e.g. green sample subdirectory of ~samplepath: ~smp[\green][1] //
///////////////////////////////////////////////////////////////////////
// allocate busses
~reverbBus = Bus.audio(s, 1);
~ringModBus = Bus.audio(s, 1);
// create group order
~smpGrp = Group.new;
// 4 BUFFERS ALLOCATED ...
~b1 = Buffer.alloc(s, s.sampleRate * 10, 1); // Allocate a 10 second mono buffer
~b0 = Buffer.alloc(s, s.sampleRate * 4, 1); //
//~b1 = Buffer.alloc(s, s.sampleRate * 4, 1); //
~b2 = Buffer.alloc(s, s.sampleRate * 4, 1); //
~b3 = Buffer.alloc(s, s.sampleRate * 4, 1); //
////////////////////////////////////////////////////////////
// function to save audio recordings to timestamped wav files
// make the MIZA directory manually for now and store audio recording archive there
// this gets triggered by the osc responder below // ~archiveInputs.value(~b0);
~path = thisProcess.platform.recordingsDir +/+ "MIZA/";
~archiveInputs = { | buf| buf.write(
path: ~path ++ "MIZA_" ++ Date.localtime.stamp ++ ".wav",
headerFormat: "wav",
sampleFormat: 'int16');
};
// load archive directories into array and scramble
~archiveDir = PathName.new(~path).files.scramble.copyFromStart(5);
~archiveDir[0]; // get a random file from archive
s.sync;
//// SYNTHS //////////////////////////////////
SynthDef.new(\splay, {| out = 0, bufnum = 0, trig = 1, amp = 1, rate=1,
atk=1, rel=1, loop=0, spos=0, gate=1 |
var env, sig;
env= EnvGen.kr(Env.asr(atk,1,rel),gate, doneAction:2);
sig = PlayBuf.ar(1, bufnum,
//BufRateScale.kr(bufnum) *
rate, trig, startPos: spos, loop:loop,
doneAction: Done.freeSelf);
sig = sig * env * amp;
Out.ar(out, sig);
}).add;
////////////////////////////////////////////////////////
s.sync;
~oscPlay = {
arg chan=1, rates=1, sdir=\bowl, amp=0.5, loop=0, group=~smpGrp;
Synth(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size)],
\out, rrand(0,1), \rate, rates, \amp, rrand(0.4, 0.8), \loop, loop], group); // recorder
postln("chan:" + chan + "rates: " + rates + "sdir:" + sdir.asString + "amp: " + amp );
};
// 'A8:42:E3:4B:10:AC'
~ls0=1; //loop state
///////////////////////////////////////////////////////////////////
s.sync;
// RECEIVE OSC MESSAGES FROM ESP32s
~esp32Receive = { arg name ,mac; OSCdef(name, { arg msg, time;
/* postln("from esp32: " + mac + " name: " + name + " sensor: " + msg[2] ); // which ESP instrument and sensor is message coming from
"~esp32Receive function declared".postln;*/
if (msg[1] == mac) { // use esp32 mac address to determine source of msg
postln("from esp32: " + mac + " name: " + name + " sensor: " + msg[2] ); // which ESP instrument and sensor is message coming from
w = case
{ msg[2] == 0} { ~oscPlay.value( chan: rrand(0,1), rates:[0.125, 0.5,1].choose + 0.1, sdir: \green, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
{ msg[2] == 1} { ~oscPlay.value( chan: rrand(0,1), rates:[8,16,24].choose + 0.2, sdir: \bowl, amp:rrand(0.4, 0.8), loop:1, group:~smpGrp ); }
{ msg[2] == 2} { ~oscPlay.value( chan: rrand(0,1), rates:[0.125, 0.5, 1].choose + 0.3, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
{ msg[2] == 3} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 0.5, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
{ msg[2] == 4} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 0.8, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
{ msg[2] == 5} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 1.3, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
{ msg[2] == 6} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 2.1, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); }
// touch 7 = toggle looping of all samplers
{ msg[2] == 7} {
~ls0 = (~ls0 + 1)% 2;
~smpGrp.set(\loop, ~ls0 ); // toggle this
postln("loop state set as:" + ~ls0 + " 7 " + msg[2] );
};
}
},'/touch') } ;
s.sync;
"asdfasdfasdf".postln;
~esp32Receive.('bendy_wires', 'A8:42:E3:4B:10:AC');
~esp32Receive.('tetractys', '48:E7:29:C3:EF:BC');
~esp32Receive.('roger', '48:E7:29:C3:EF:BC');
~esp32Receive.('robbie', 'A8:42:E3:57:A1:38');
~esp32Receive.('tina', 'A8:42:E3:47:5E:3C ');
};
//}
/// mesages from tetractys esp32
// 3C:E9:0E:AD:E5:00 - general
// 48:E7:29:C3:EF:BC - tetractys
// A0:B7:65:4A:AB:40 // white clip
// A8:42:E3:4B:10:AC // testing thin case