added live patch for 2xmpr121

master
Rob Canning 2023-09-12 18:17:02 +02:00
parent f49a316ccb
commit 394ae3ad2f
3 changed files with 385 additions and 145 deletions

View File

@ -27,63 +27,15 @@ Adafruit_NeoPixel pixels(1, PIN, NEO_GRB + NEO_KHZ800);
#ifndef _BV #ifndef _BV
#define _BV(bit) (1 << (bit)) #define _BV(bit) (1 << (bit))
#endif #endif/
// You can have up to 4 on one i2c bus but one is enough for testing! .//./ You can have up to 4 on one i2c bus but one is enough for testing!
Adafruit_MPR121 cap = Adafruit_MPR121();
// Keeps track of the last pins touched
// so we know when buttons are 'released'
uint16_t lasttouched = 0;
uint16_t currtouched = 0;
// Wi-Fi SETTINGS ///////////// Adafruit_MPR121 cap0 = Adafruit_MPR121();
#include <WiFi.h> Adafruit_MPR121 cap1 = Adafruit_MPR121();
const char* ssid = "zavod rizoma_EXT"; pixels.begin(); // INITIALIZE NeoPixel (REQUIRED)
const char* password = "cermozise";
// BROADCAST TO ALL IP / port
const IPAddress castIp = IPAddress(192,168,0,255); // 255 FOR BROADCAST
const int port = 57120; // SUPERCOLLIDERS DEFAULT INCOMING OSC PORT
bool connected = false;
#include <WiFiUdp.h>
WiFiUDP udp;
// OSC and serial communications ////////////////////////////
#define SERIAL_OSC
#define WIFI_OSC
#include <OSCBundle.h>
#include <OSCMessage.h>
#include <OSCBoards.h>
/* OSC MSG channels */
OSCBundle bundle;
// SERIAL /////////////////////////////////
#ifdef BOARD_HAS_USB_SERIAL
#include <SLIPEncodedUSBSerial.h>
SLIPEncodedUSBSerial SLIPSerial( thisBoardsSerialUSB );
#else
#include <SLIPEncodedSerial.h>
SLIPEncodedSerial SLIPSerial(Serial);
#endif
// CAPACITIVE TOUCH SETUP ///////////////////
byte keys[] = {1,2,3,4,5,6,7,10,11,12,13,14};
byte KEYLEN = 12;
byte pressed[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
byte lastTouchState[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
byte touchState[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
byte lastDebounceTime[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers
//int THRESH = 40; // capacitive noise threshold
///////////////////////////////////////////
void setup() {
pixels.setBrightness(5);
pixels.begin(); // INITIALIZE NeoPixel (REQUIRED)
pinMode(ledPin, OUTPUT); //Define ledPin as output pinMode(ledPin, OUTPUT); //Define ledPin as output
pinMode(shiftLedPin, OUTPUT); //Define ledPin as output pinMode(shiftLedPin, OUTPUT); //Define ledPin as output
@ -99,13 +51,22 @@ void setup() {
// Default address is 0x5A, if tied to 3.3V its 0x5B // Default address is 0x5A, if tied to 3.3V its 0x5B
// If tied to SDA its 0x5C and if SCL then 0x5D // If tied to SDA its 0x5C and if SCL then 0x5D
if (!cap.begin(0x5A)) { if (!cap1.begin(0x5A)) {
Serial.println("MPR121 not found, check wiring?"); Serial.println("MPR121 not found, check wiring?");
while (1); while (1);
} }
Serial.println("MPR121 found!"); Serial.println("MPR121 found!");
if (!cap2.begin(0x5C)) {
Serial.println("MPR121 not found, check wiring?");
while (1);
}
Serial.println("MPR121 found!");
// I2C init // I2C init
//Serial.println("Starting up I2C"); //Serial.println("Starting up I2C");
//Wire.begin(); //Wire.begin();
@ -126,7 +87,9 @@ void setup() {
} // setup ends ////////////////////////////////////////////////// } // setup ends //////////////////////////////////////////////////
// MAIN LOOP ///////////////////////////////////////////////////////// // MAIN LOOP /////////////////////////////////////////////////////////
int colorCount = 0; int colorCount = 0;
void loop() { void loop() {
//Set the new color on the pixel. //Set the new color on the pixel.
pixels.setPixelColor(0, Wheel(colorCount++)); pixels.setPixelColor(0, Wheel(colorCount++));
@ -135,8 +98,9 @@ void loop() {
if (colorCount > 255) if (colorCount > 255)
colorCount = 0; colorCount = 0;
sendCapacitive(); sendCapacitiveA(); // from the 121
sendCapacitiveOlimex(); sendCapacitiveB(); // from the 121
sendCapacitiveOlimex(); // from the board
} }
@ -185,13 +149,13 @@ void connectWiFi(){
// detect touch events and send over OSC ////////////// // detect touch events and send over OSC //////////////
void sendCapacitive(void){ void sendCapacitiveA(void){
// Get the currently touched pads // Get the currently touched pads
currtouched = cap.touched(); currtouched0 = cap1.touched();
for (uint8_t i=0; i<KEYLEN; i++) { for (uint8_t i=0; i<KEYLEN; i++) {
// it if *is* touched and *wasnt* touched before, alert! // it if *is* touched and *wasnt* touched before, alert!
if ((currtouched & _BV(i)) && !(lasttouched & _BV(i)) ) { if ((currtouched0 & _BV(i)) && !(lasttouched0 & _BV(i)) ) {
Serial.print(i); Serial.println(" touched"); Serial.print(i); Serial.println(" touched");
ledState = !ledState; ledState = !ledState;
@ -207,11 +171,11 @@ void sendCapacitive(void){
udp.endPacket(); udp.endPacket();
#endif #endif
String cap = "val for key num: " + String(i) + " === " + String(HIGH); String cap1 = "val for key num: " + String(i) + " === " + String(HIGH);
Serial.println("OSC SENT "); Serial.println(cap); Serial.println("OSC SENT "); Serial.println(cap0);
} }
// if it *was* touched and now *isnt*, alert! // if it *was* touched and now *isnt*, alert!
if (!(currtouched & _BV(i)) && (lasttouched & _BV(i)) ) { if (!(currtouched0 & _BV(i)) && (lasttouched0 & _BV(i)) ) {
Serial.print(i); Serial.println(" released"); Serial.print(i); Serial.println(" released");
OSCMessage msg("/release_121_A"); OSCMessage msg("/release_121_A");
@ -225,15 +189,15 @@ void sendCapacitive(void){
udp.endPacket(); udp.endPacket();
#endif #endif
String cap = "val for key num: " + String(i) + " === " + String(LOW); String cap1 = "val for key num: " + String(i) + " === " + String(LOW);
Serial.println("OSC SENT "); Serial.println(cap); Serial.println("OSC SENT "); Serial.println(cap1);
} }
} }
// reset our state // reset our state
lasttouched = currtouched; lasttouched0 = currtouched0;
/* /*
@ -271,6 +235,90 @@ void sendCapacitive(void){
void sendCapacitiveB(void){
// Get the currently touched pads
currtouched1 = cap2.touched();
for (uint8_t i=0; i<KEYLEN; i++) {
// it if *is* touched and *wasnt* touched before, alert!
if ((currtouched1 & _BV(i)) && !(lasttouched1 & _BV(i)) ) {
Serial.print(i); Serial.println(" touched");
ledState = !ledState;
OSCMessage msg("/touch_121_B");
msg.add(WiFi.macAddress().c_str()); // mac address of sender
msg.add((int32_t)i); // send which sensor was touched
#ifdef WIFI_OSC
udp.beginPacket(castIp, port);
//bundle.send(udp);
msg.send(udp);
udp.endPacket();
#endif
String cap2 = "val for key num: " + String(i) + " === " + String(HIGH);
Serial.println("OSC SENT "); Serial.println(cap2);
}
// if it *was* touched and now *isnt*, alert!
if (!(currtouched1 & _BV(i)) && (lasttouched1 & _BV(i)) ) {
Serial.print(i); Serial.println(" released");
OSCMessage msg("/release_121_B");
msg.add(WiFi.macAddress().c_str()); // mac address of sender
msg.add((int32_t)i); // send which sensor was touched
#ifdef WIFI_OSC
udp.beginPacket(castIp, port);
//bundle.send(udp);
msg.send(udp);
udp.endPacket();
#endif
String cap2 = "val for key num: " + String(i) + " === " + String(LOW);
Serial.println("OSC SENT "); Serial.println(cap2);
}
}
// reset our state
lasttouched1 = currtouched1;
/*
// comment out this line for detailed data from the sensor!
// return;
// debugging info, what
Serial.print("\t\t\t\t\t\t\t\t\t\t\t\t\t 0x"); Serial.println(cap.touched(), HEX);
Serial.print("Filt: ");
for (uint8_t i=0; i<KEYLEN; i++) {
Serial.print(cap.filteredData(i)); Serial.print("\t");
}
Serial.println();
Serial.print("Base: ");
for (uint8_t i=0; i<KEYLEN; i++) {
Serial.print(cap.baselineData(i)); Serial.print("\t");
}
Serial.println();
*/
// put a delay so it isn't overwhelming
delay(5);
//return;
/////////////////////////////////////////////////////////////////////////////////////////
//Serial.println(int(currtouched+pow(2,12)),BIN);
//Serial.print("<");
//Serial.println(">");
} //////////////////

View File

@ -1,20 +1,16 @@
/*RUN*/ /*RUN*/
//supercollider file for spellcaster
s.options.numInputBusChannels = 4; s.options.numInputBusChannels = 4;
s.options.numOutputBusChannels = 4; s.options.numOutputBusChannels = 4;
OSCFunc.trace(true); // Turn posting on //OSCFunc.trace(true); // Turn posting on
OSCFunc.trace(false); // Turn posting off //OSCFunc.trace(false); // Turn posting off
//s.boot;
//(
s.waitForBoot{ s.waitForBoot{
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// set path for sample location and make dictionary of subdirectories // set path for sample location and make dictionary of subdirectories
//~samplepath = thisProcess.nowExecutingPath.dirname ++ "/samples"; //~samplepath = thisProcess.nowExecutingPath.dirname ++ "/samples";
~samplepath = "/home/rizoma/pifcamp2023/sc/samples"; // CHANGE THIS TO YOUR OWN PATH ~samplepath = "/home/rob/pifcamp2023/sc/samples"; // CHANGE THIS TO YOUR OWN PATH
~smp = Dictionary.new; ~smp = Dictionary.new;
PathName(~samplepath).entries.do{ PathName(~samplepath).entries.do{
@ -27,9 +23,7 @@ s.waitForBoot{
) )
); );
}; };
// e.g. green sample subdirectory of ~samplepath: ~smp[\green][1] // // e.g. green sample subdirectory of ~samplepath: ~smp[\green][1] //
/////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////
// allocate busses // allocate busses
@ -37,104 +31,138 @@ s.waitForBoot{
~ringModBus = Bus.audio(s, 1); ~ringModBus = Bus.audio(s, 1);
// create group order // create group order
~smpGrp = Group.new; ~sGA = Group.new; ~sGB = Group.new; ~sGC = Group.new; ~sGD = Group.new;
// 4 BUFFERS ALLOCATED ...
~b1 = Buffer.alloc(s, s.sampleRate * 10, 1); // Allocate a 10 second mono buffer
~b0 = Buffer.alloc(s, s.sampleRate * 4, 1); //
//~b1 = Buffer.alloc(s, s.sampleRate * 4, 1); //
~b2 = Buffer.alloc(s, s.sampleRate * 4, 1); //
~b3 = Buffer.alloc(s, s.sampleRate * 4, 1); //
////////////////////////////////////////////////////////////
// function to save audio recordings to timestamped wav files
// make the MIZA directory manually for now and store audio recording archive there
// this gets triggered by the osc responder below // ~archiveInputs.value(~b0);
~path = thisProcess.platform.recordingsDir +/+ "MIZA/";
~archiveInputs = { | buf| buf.write(
path: ~path ++ "MIZA_" ++ Date.localtime.stamp ++ ".wav",
headerFormat: "wav",
sampleFormat: 'int16');
};
// load archive directories into array and scramble
~archiveDir = PathName.new(~path).files.scramble.copyFromStart(5);
~archiveDir[0]; // get a random file from archive
s.sync; s.sync;
//// SYNTHS ////////////////////////////////// //// SYNTHS //////////////////////////////////
SynthDef.new(\splay, {| out = 0, bufnum = 0, trig = 1, amp = 1, rate=1, SynthDef.new(\splay, {| out=0, bufnum=0, t_trig=0, amp=0.5, rate=1,
atk=1, rel=1, loop=0, spos=0, gate=1 | atk=1, rel=1, loop=0, spos=0, gate=0, panRate=0.2 |
var env, sig; var env, sig;
env= EnvGen.kr(Env.asr(atk,1,rel),gate, doneAction:2); env= EnvGen.kr(Env.asr(atk,1,rel),gate, doneAction:2);
sig = PlayBuf.ar(1, bufnum, sig = PlayBuf.ar(1, bufnum, rate, t_trig, startPos: spos, loop:loop, doneAction: 0);
//BufRateScale.kr(bufnum) *
rate, trig, startPos: spos, loop:loop,
doneAction: Done.freeSelf);
sig = sig * env * amp; sig = sig * env * amp;
sig = Pan2.ar(sig, FSinOsc.kr(panRate));
Out.ar(out, sig); Out.ar(out, sig);
}).add; }).add;
////////////////////////////////////////////////////////
s.sync; s.sync;
~oscPlay = { ~oPA = 8.collect({
arg chan=1, rates=1, sdir=\bowl, amp=0.5, loop=0, group=~smpGrp; arg itt, rate=1, out=0, sdir=\bowl,
Synth(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size)], amp=0.5, loop=1, panRate=rrand(0.05,0.75), group=~sGA;
\out, rrand(0,1), \rate, rates, \amp, rrand(0.4, 0.8), \loop, loop], group); // recorder //var deg = Scale.major[deg].midiratio;
postln("chan:" + chan + "rates: " + rates + "sdir:" + sdir.asString + "amp: " + amp ); //postln( itt + " bufnum" + \bufnum + "sdir:" + sdir.asString + "amp: " + amp + "out: " + out);
}; Synth.new(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size-1)], \out, out, \loop, loop, panRate: panRate], group);
});
// 'A8:42:E3:4B:10:AC' ~oPB = 8.collect({
~ls0=1; //loop state arg itt, rate=1, out=0, sdir=\green,
amp=0.1, loop=1, panRate=rrand(0.05,0.75), group=~sGA;
//var deg = Scale.major[deg].midiratio;
//postln( itt + " bufnum" + \bufnum + "sdir:" + sdir.asString + "amp: " + amp + "out: " + out);
Synth.new(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size-1)], \out, out, \loop, loop, panRate: panRate], group);
});
///////////////////////////////////////////////////////////////////
// RECEIVE OSC MESSAGES FROM ESP32s
~shift = 0; // shift state
~ls0=1; // loop state
s.sync; s.sync;
// RECEIVE OSC MESSAGES FROM ESP32s ~esp32Receive = { arg name ,mac; OSCdef(name, { arg msg, time;
~esp32Receive = { arg name ,mac; OSCdef(name, { arg msg, time;
/* postln("from esp32: " + mac + " name: " + name + " sensor: " + msg[2] ); // which ESP instrument and sensor is message coming from
"~esp32Receive function declared".postln;*/
if (msg[1] == mac) { // use esp32 mac address to determine source of msg // msg[1] sender mac address
// msg[2] which of the [0 - 11] sensors is touched
// msg[3] is it a touch [1] or a release [0]
// msg[4] which of the connected mpr121 boards is sending
postln("from esp32: " + mac + " name: " + name + " sensor: " + msg[2] ); // which ESP instrument and sensor is message coming from if (msg[1] == mac && msg[3] == 1 && msg[4] == 0 && ~shift == 0 ) {
postln("first board" + msg[2]);
~scale = Scale.partch_o1;
w = case w = case
{ msg[2] == 0} { ~oscPlay.value( chan: rrand(0,1), rates:[0.125, 0.5,1].choose + 0.1, sdir: \green, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 0} { ~oPA[0].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \loop, 1, \gate, 1); }
{ msg[2] == 1} { ~oscPlay.value( chan: rrand(0,1), rates:[8,16,24].choose + 0.2, sdir: \bowl, amp:rrand(0.4, 0.8), loop:1, group:~smpGrp ); } { msg[2] == 1} { ~oPA[1].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 2} { ~oscPlay.value( chan: rrand(0,1), rates:[0.125, 0.5, 1].choose + 0.3, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 2} { ~oPA[2].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 3} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 0.5, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 3} { ~oPA[3].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 4} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 0.8, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 4} { ~oPA[4].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 5} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 1.3, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 5} { ~oPA[5].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 6} { ~oscPlay.value( chan: rrand(0,1), rates:[0.5, 1,2,3].choose + 2.1, sdir: \bowl, amp:rrand(0.4, 0.8), loop:0, group:~smpGrp ); } { msg[2] == 6} { ~oPA[6].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 7} { ~oPA[7].set(\rate, ~scale[rrand(0,47)].midiratio + 1 , \t_trig, 1, \gate, 1); }
// touch 7 = toggle looping of all samplers { msg[2] == 8 } { // touch 7 = toggle looping of all samplers
{ msg[2] == 7} {
~ls0 = (~ls0 + 1)% 2; ~ls0 = (~ls0 + 1)% 2;
~smpGrp.set(\loop, ~ls0 ); // toggle this ~sGA.set(\loop, ~ls0 ); // toggle this
postln("loop state set as:" + ~ls0 + " 7 " + msg[2] ); postln("loop state set as:" + ~ls0 + " 7 " + msg[2] );
}; };
};
if (msg[1] == mac && msg[3] == 1 && msg[4] == 1) {
postln("second board" + msg[2]);
w = case
{ msg[2] == 0} { ~oPB[0].set(\rate, Scale.major[0].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 1} { ~oPB[1].set(\rate, Scale.major[1].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 2} { ~oPB[2].set(\rate, Scale.major[2].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 3} { ~oPB[3].set(\rate, Scale.major[3].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 4} { ~oPB[4].set(\rate, Scale.major[4].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 5} { ~oPB[5].set(\rate, Scale.major[5].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 6} { ~oPB[6].set(\rate, Scale.major[6].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 7} { ~oPB[7].set(\rate, Scale.major[7].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 8 } { // touch 7 = toggle looping of all samplers
~ls0 = (~ls0 + 1)% 2;
~sGB.set(\loop, ~ls0 ); // toggle this
postln("loop state set as:" + ~ls0 + " 7 " + msg[2] );
};
};
// select with SHIFT key - toggle effect = apply with enter key
// set a state // release of shift key acts as enter
// msg[1] sender mac address
// msg[2] which of the [0 - 11] sensors is touched
// msg[3] is it a touch [1] or a release [0]
// msg[4] which of the connected mpr121 boards is sending
// if SHIFT IS DEPRESSED on board 1 - shift enabled while 11 depressed
if (msg[1] == mac && msg[2] == 11 && msg[4] == 0 ) {
if (msg[3]==1){
~shift = 1; postln("shift is enabled" )}
{ ~shift = 0; postln("shift is disabled" )}
};
// when finished apply effect/change and set state to unselected
if (~shift==1) {
postln(" shift is pressed " + msg[2]);
w = case
{ msg[2] == 0} { ~oPA[0].set(\rate, 16); }
{ msg[2] == 1} { ~oPA[1].set(\rate, 14); }
{ msg[2] == 2} { ~oPA[2].set(\rate, 12); }
{ msg[2] == 3} { ~oPA[3].set(\rate, 10); }
{ msg[2] == 4} { ~oPA[4].set(\rate, 8); }
{ msg[2] == 5} { ~oPA[5].set(\rate, 6); }
{ msg[2] == 6} { ~oPA[6].set(\rate, 4); }
{ msg[2] == 7} { ~oPA[7].set(\rate, 2); }
} }
},'/touch') } ; //~oPA[0].get(\rate.poll).poll
},'/touch') } ;
~oPA[0].get(\rate).value;
s.sync; s.sync;
"asdfasdfasdf".postln; ~esp32Receive.('anything', '3C:E9:0E:AD:A5:48');
~esp32Receive.('bendy_wires', 'A8:42:E3:4B:10:AC'); ~sG.set(\amp, 1);
~esp32Receive.('tetractys', '48:E7:29:C3:EF:BC'); ~sG.set(\rate, -1);
~esp32Receive.('roger', '48:E7:29:C3:EF:BC');
~esp32Receive.('robbie', 'A8:42:E3:57:A1:38');
~esp32Receive.('tina', 'A8:42:E3:47:5E:3C ');
~sGB.set(\amp, 0.2);
"patch loaded and ready...".postln;
}; };
//}
/// mesages from tetractys esp32
// 3C:E9:0E:AD:E5:00 - general
// 48:E7:29:C3:EF:BC - tetractys
// A0:B7:65:4A:AB:40 // white clip
// A8:42:E3:4B:10:AC // testing thin case

View File

@ -0,0 +1,164 @@
/*RUN*/
s.options.numInputBusChannels = 4;
s.options.numOutputBusChannels = 4;
//OSCFunc.trace(true); // Turn posting on
//OSCFunc.trace(false); // Turn posting off
s.waitForBoot{
///////////////////////////////////////////////////////////////////////////
// set path for sample location and make dictionary of subdirectories
//~samplepath = thisProcess.nowExecutingPath.dirname ++ "/samples";
~samplepath = "/home/rob/pifcamp2023/sc/samples"; // CHANGE THIS TO YOUR OWN PATH
~smp = Dictionary.new;
PathName(~samplepath).entries.do{
arg subfolder;
~smp.add(
subfolder.folderName.asSymbol ->
Array.fill(
subfolder.entries.size,
{ arg i; Buffer.read(s, subfolder.entries[i].fullPath).normalize;}
)
);
};
// e.g. green sample subdirectory of ~samplepath: ~smp[\green][1] //
///////////////////////////////////////////////////////////////////////
// allocate busses
~reverbBus = Bus.audio(s, 1);
~ringModBus = Bus.audio(s, 1);
// create group order
~sGA = Group.new; ~sGB = Group.new; ~sGC = Group.new; ~sGD = Group.new;
s.sync;
//// SYNTHS //////////////////////////////////
SynthDef.new(\splay, {| out=0, bufnum=0, t_trig=0, amp=0.5, rate=1,
atk=1, rel=1, loop=0, spos=0, gate=0, panRate=0.2 |
var env, sig;
env= EnvGen.kr(Env.asr(atk,1,rel),gate, doneAction:2);
sig = PlayBuf.ar(1, bufnum, rate, t_trig, startPos: spos, loop:loop, doneAction: 0);
sig = sig * env * amp;
sig = Pan2.ar(sig, FSinOsc.kr(panRate));
Out.ar(out, sig);
}).add;
s.sync;
~oPA = 8.collect({
arg itt, rate=1, out=0, sdir=\bowl,
amp=0.5, loop=1, panRate=rrand(0.05,0.75), group=~sGA;
Synth.new(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size-1)], \out, out, \loop, loop, panRate: panRate], group);
});
~oPB = 8.collect({
arg itt, rate=1, out=0, sdir=\green,
amp=0.1, loop=1, panRate=rrand(0.05,0.75), group=~sGA;
Synth.new(\splay, [\bufnum, ~smp[sdir][rrand(0,~smp[sdir].size-1)], \out, out, \loop, loop, panRate: panRate], group);
});
// RECEIVE OSC MESSAGES FROM ESP32s
~shift = 0; // shift state
~ls0=1; // loop state
s.sync;
~esp32Receive = { arg name ,mac; OSCdef(name, { arg msg, time;
// msg[1] sender mac address
// msg[2] which of the [0 - 11] sensors is touched
// msg[3] is it a touch [1] or a release [0]
// msg[4] which of the connected mpr121 boards is sending
if (msg[1] == mac && msg[3] == 1 && msg[4] == 0 && ~shift == 0 ) {
postln("first board" + msg[2]);
~scale = Scale.partch_o1;
w = case
{ msg[2] == 0} { ~oPA[0].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \loop, 1, \gate, 1); }
{ msg[2] == 1} { ~oPA[1].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 2} { ~oPA[2].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 3} { ~oPA[3].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 4} { ~oPA[4].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 5} { ~oPA[5].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 6} { ~oPA[6].set(\rate, ~scale[rrand(0,47)].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 7} { ~oPA[7].set(\rate, ~scale[rrand(0,47)].midiratio + 1 , \t_trig, 1, \gate, 1); }
{ msg[2] == 8 } { // touch 7 = toggle looping of all samplers
~ls0 = (~ls0 + 1)% 2;
~sGA.set(\loop, ~ls0 ); // toggle this
postln("loop state set as:" + ~ls0 + " 7 " + msg[2] );
};
};
if (msg[1] == mac && msg[3] == 1 && msg[4] == 1) {
postln("second board" + msg[2]);
w = case
{ msg[2] == 0} { ~oPB[0].set(\rate, Scale.major[0].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 1} { ~oPB[1].set(\rate, Scale.major[1].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 2} { ~oPB[2].set(\rate, Scale.major[2].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 3} { ~oPB[3].set(\rate, Scale.major[3].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 4} { ~oPB[4].set(\rate, Scale.major[4].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 5} { ~oPB[5].set(\rate, Scale.major[5].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 6} { ~oPB[6].set(\rate, Scale.major[6].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 7} { ~oPB[7].set(\rate, Scale.major[7].midiratio, \t_trig, 1, \gate, 1); }
{ msg[2] == 8 } { // touch 7 = toggle looping of all samplers
~ls0 = (~ls0 + 1)% 2;
~sGB.set(\loop, ~ls0 ); // toggle this
postln("loop state set as:" + ~ls0 + " 7 " + msg[2] );
};
};
// select with SHIFT key - toggle effect = apply with enter key
// set a state // release of shift key acts as enter
// msg[1] sender mac address
// msg[2] which of the [0 - 11] sensors is touched
// msg[3] is it a touch [1] or a release [0]
// msg[4] which of the connected mpr121 boards is sending
// if SHIFT IS DEPRESSED on board 1 - shift enabled while 11 depressed
if (msg[1] == mac && msg[2] == 11 && msg[4] == 0 ) {
if (msg[3]==1){
~shift = 1; postln("shift is enabled" )}
{ ~shift = 0; postln("shift is disabled" )}
};
// when finished apply effect/change and set state to unselected
if (~shift==1) {
postln(" shift is pressed " + msg[2]);
w = case
{ msg[2] == 0} { ~oPA[0].set(\rate, 16); }
{ msg[2] == 1} { ~oPA[1].set(\rate, 14); }
{ msg[2] == 2} { ~oPA[2].set(\rate, 12); }
{ msg[2] == 3} { ~oPA[3].set(\rate, 10); }
{ msg[2] == 4} { ~oPA[4].set(\rate, 8); }
{ msg[2] == 5} { ~oPA[5].set(\rate, 6); }
{ msg[2] == 6} { ~oPA[6].set(\rate, 4); }
{ msg[2] == 7} { ~oPA[7].set(\rate, 2); }
}
//~oPA[0].get(\rate.poll).poll
},'/touch') } ;
~oPA[0].get(\rate).value;
s.sync;
~esp32Receive.('anything', '3C:E9:0E:AD:A5:48');
~sG.set(\amp, 1);
~sG.set(\rate, -1);
~sGB.set(\amp, 0.2);
"patch loaded and ready...".postln;
};