2021-02-18 05:11:25 +01:00
-- The Group class is responsible for object management.
-- A common usage is to create different groups for different "layers" of behavior in the game:
--[[
Game = Object : extend ( )
Game : implement ( State )
function Game : on_enter ( )
self.main = Group ( ) : set_as_physics_world ( 192 )
self.effects = Group ( )
self.floor = Group ( )
self.ui = Group ( ) : no_camera ( )
end
function Game : update ( dt )
self.main : update ( dt )
self.floor : update ( dt )
self.effects : update ( dt )
self.ui : update ( dt )
end
function Game : draw ( )
self.floor : draw ( )
self.main : sort_by_y ( )
self.main : draw ( )
self.effects : draw ( )
self.ui : draw ( )
end
] ] --
-- This is a simple example where you have four groups, each for a different purpose.
-- The main group is where all gameplay objects are and thus the only one that's using the physics world (box2d).
-- If you need an object to collide with another physically then they have to use the same physics world, and thus also the same group.
-- The effects and floor groups are purely visual, one for drawing things on the floor (it's a top-down-ish 2.5D game), like shadows, and the other for drawing visual effects on top of everything else.
-- As you can see in the draw function, floor is drawn first and effects is drawn after all gameplay objects.
-- These three groups above also all use the game's main camera instance as their targets since we want gameplay objects, floor and visual effects to be drawn according to the camera's transform.
-- Finally, the UI group is the one that doesn't have a camera attached to it because we want its objects to be drawn in fixed locations on the screen.
-- And this group is also drawn last because generally UI elements go on top of literally everything else.
Group = Object : extend ( )
function Group : init ( )
self.t = Trigger ( )
self.camera = camera
self.objects = { }
self.objects . by_id = { }
self.objects . by_class = { }
self.cells = { }
2021-02-20 02:54:54 +01:00
self.cell_size = 64
2021-02-18 05:11:25 +01:00
return self
end
function Group : update ( dt )
self.t : update ( dt )
for _ , object in ipairs ( self.objects ) do object : update ( dt ) end
if self.world then self.world : update ( dt ) end
self.cells = { }
for _ , object in ipairs ( self.objects ) do
local cx , cy = math.floor ( object.x / self.cell_size ) , math.floor ( object.y / self.cell_size )
if not self.cells [ cx ] then self.cells [ cx ] = { } end
if not self.cells [ cx ] [ cy ] then self.cells [ cx ] [ cy ] = { } end
table.insert ( self.cells [ cx ] [ cy ] , object )
end
for i = # self.objects , 1 , - 1 do
if self.objects [ i ] . dead then
if self.objects [ i ] . destroy then self.objects [ i ] : destroy ( ) end
self.objects . by_id [ self.objects [ i ] . id ] = nil
table.delete ( self.objects . by_class [ getmetatable ( self.objects [ i ] ) ] , function ( v ) return v.id == self.objects [ i ] . id end )
table.remove ( self.objects , i )
end
end
end
-- scroll_factor_x and scroll_factor_y can be used for parallaxing, they should be values between 0 and 1
-- The closer to 0, the more of a parallaxing effect there will be.
function Group : draw ( scroll_factor_x , scroll_factor_y )
if self.camera then self.camera : attach ( scroll_factor_x , scroll_factor_y ) end
for _ , object in ipairs ( self.objects ) do object : draw ( ) end
if self.camera then self.camera : detach ( ) end
end
-- Draws only objects within the indexed range
-- group:draw_range(1, 3) -> draws only 1st, 2nd and 3rd objects in this group
function Group : draw_range ( i , j , scroll_factor_x , scroll_factor_y )
if self.camera then self.camera : attach ( scroll_factor_x , scroll_factor_y ) end
for k = i , j do self.objects [ k ] : draw ( ) end
if self.camera then self.camera : detach ( ) end
end
-- Draws only objects of a certain class
-- group:draw_class(Solid) -> draws only objects of the Solid class
function Group : draw_class ( class , scroll_factor_x , scroll_factor_y )
if self.camera then self.camera : attach ( scroll_factor_x , scroll_factor_y ) end
for _ , object in ipairs ( self.objects ) do
if object : is ( class ) then
object : draw ( )
end
end
if self.camera then self.camera : detach ( ) end
end
-- Draws all objects except those of specified classes
-- group:draw_all_except({Solid, SolidGeometry}) -> draws all objects except those of the Solid and SolidGeometry classes
function Group : draw_all_except ( classes , scroll_factor_x , scroll_factor_y )
if self.camera then self.camera : attach ( scroll_factor_x , scroll_factor_y ) end
for _ , object in ipairs ( self.objects ) do
if not table.any ( classes , function ( v ) return object : is ( v ) end ) then
object : draw ( )
end
end
if self.camera then self.camera : detach ( ) end
end
-- Sets this group as one without a camera, useful for things like UIs
function Group : no_camera ( )
self.camera = nil
return self
end
-- Sorts all objects in this group by their y position
-- This is useful for top-down 2.5D games so that objects further up on the screen are drawn first and look like they're further away from the camera
-- Objects can additionally have a .y_sort_offset attribute which gets added to this function's calculations
-- This attribute is useful for objects that are longer vertically and need some adjusting otherwise the point at which they get drawn behind looks off
function Group : sort_by_y ( )
table.sort ( self.objects , function ( a , b ) return ( a.y + ( a.y_sort_offset or 0 ) ) < ( b.y + ( b.y_sort_offset or 0 ) ) end )
end
-- Returns the mouse position based on the camera used by this group
-- mx, my = group:get_mouse_position()
function Group : get_mouse_position ( )
if self.camera then
return self.camera . mouse.x , self.camera . mouse.y
else
local mx , my = love.mouse . getPosition ( )
return mx / sx , my / sy
end
end
function Group : destroy ( )
for _ , object in ipairs ( self.objects ) do object : destroy ( ) end
self.objects = { }
self.objects . by_id = { }
self.objects . by_class = { }
if self.world then
self.world : destroy ( )
self.world = nil
end
return self
end
-- Adds an existing object to the group
-- player = Player{x = 160, y = 80}
-- group:add(player)
-- Creates an object and automatically add it to the group
-- player = Player{group = group, x = 160, y = 80}
-- The object has its .group attribute set to this group, and has a random .id set if it doesn't already have one
function Group : add ( object )
local class = getmetatable ( object )
object.group = self
2021-02-22 03:54:50 +01:00
2021-02-18 05:11:25 +01:00
if not object.id then object.id = random : uid ( ) end
self.objects . by_id [ object.id ] = object
if not self.objects . by_class [ class ] then self.objects . by_class [ class ] = { } end
table.insert ( self.objects . by_class [ class ] , object )
table.insert ( self.objects , object )
return object
end
-- Returns an object by its unique id
-- group:get_object_by_id(id) -> the object
function Group : get_object_by_id ( id )
return self.objects . by_id [ id ]
end
-- Returns the first object found after searching for it by property, the property value must be unique among all objects
-- group:get_object_by_property('special_id', 347762) -> the object
function Group : get_object_by_property ( key , value )
for _ , object in ipairs ( self.objects ) do
if object [ key ] == value then
return object
end
end
end
-- Returns an object after searching for it by properties with all of them matching, the property value match must be unique among all objects
-- group:get_object_by_properties({'special_id_1', 'special_id_2'}, {347762, 32452}) -> the object
function Group : get_object_by_properties ( keys , values )
for _ , object in ipairs ( self.objects ) do
local this_is_the_object = true
for i = 1 , # keys do
if object [ keys [ i ] ] ~= values [ i ] then
this_is_the_object = false
end
end
if this_is_the_object then
return object
end
end
end
-- Returns all objects of a specific class
-- group:get_objects_by_class(Star) -> all objects of class Star in a table
function Group : get_objects_by_class ( class )
if not self.objects . by_class [ class ] then return { }
else return table.shallow_copy ( self.objects . by_class [ class ] ) end
end
-- Returns all objects of the specified classes
-- group:get_objects_by_classes({Star, Enemy, Projectile}) -> all objects of class Star, Enemy or Projectile in a table
function Group : get_objects_by_classes ( class_list )
local objects = { }
for _ , class in ipairs ( class_list ) do table.insert ( objects , self : get_objects_by_class ( class ) ) end
return table.flatten ( objects , true )
end
-- Returns all objects inside the shape, using its .x, .y attributes as the center and its .w, .h attributes as its bounding size.
-- If object_types is passed in then it only returns object of those classes.
-- The bounding size is used to select objects quickly and roughly, and then more specific and expensive collision methods are run on the objects returned from that selection.
-- group:get_objects_in_shape(Rectangle(player.x, player.y, 100, 100, player.r), {Enemy1, Enemy2}) -> all Enemy1 and Enemy2 instances in a 100x100 rotated rectangle around the player
-- group:get_objects_in_shape(Rectangle(player.x, player.y, 100, 100, player.r), {Enemy1, Enemy2}, {object_1, object_2}) -> same as above except excluding object instances object_1 and object_2
function Group : get_objects_in_shape ( shape , object_types , exclude_list )
local out = { }
local exclude_list = exclude_list or { }
local cx1 , cy1 = math.floor ( ( shape.x - shape.w ) / self.cell_size ) , math.floor ( ( shape.y - shape.h ) / self.cell_size )
local cx2 , cy2 = math.floor ( ( shape.x + shape.w ) / self.cell_size ) , math.floor ( ( shape.y + shape.h ) / self.cell_size )
for i = cx1 , cx2 do
for j = cy1 , cy2 do
local cx , cy = i , j
if self.cells [ cx ] then
local cell_objects = self.cells [ cx ] [ cy ]
if cell_objects then
for _ , object in ipairs ( cell_objects ) do
if object_types then
if not table.any ( exclude_list , function ( v ) return v.id == object.id end ) then
if table.any ( object_types , function ( v ) return object : is ( v ) end ) and object.shape and object.shape : is_colliding_with_shape ( shape ) then
table.insert ( out , object )
end
end
else
if object.shape and object : is_colliding_with_shape ( shape ) then
table.insert ( out , object )
end
end
end
end
end
end
end
return out
end
-- Returns the closest object in this group to the object passed in
-- Optionally also pass in a function which will only allow objects that pass its test to be considered in the calculations
-- group:get_closest_object(player) -> closest object to the player, if the player is in this group then this object will be the player itself
-- group:get_closest_object(player, function(o) return o.id ~= player.id end) -> closest object to the player that isn't the player
function Group : get_closest_object ( object , select_function )
if not select_function then select_function = function ( o ) return true end end
local min_distance , min_index = 100000 , 0
for i , o in ipairs ( self.objects ) do
if select_function ( o ) then
local d = math.distance ( o.x , o.y , object.x , object.y )
if d < min_distance then
min_distance = d
min_index = i
end
end
end
return self.objects [ min_index ]
end
-- Sets this group as a physics box2d world
-- This means that objects inserted here can also be initialized as physics objects (see the gameobject file for more on this)
-- group:set_as_physics_world(192, 0, 400) -> a common platformer setup with vertical downward gravity
-- group:set_as_physics_world(192) -> a common setup for most non-platformer games
-- If your game takes place in smaller world coordinates (i.e. you set game_width and game_height to 320x240 or something) then you'll want smaller meter values, like 32 instead of 192
-- Read more on meter values for box2d worlds here: https://love2d.org/wiki/love.physics.setMeter
-- The last argument, tags, is a list of strings corresponding to collision tags that will be assigned to different objects, for instance:
-- group:set_as_physics_world(192, 0, 0, {'player', 'enemy', 'projectile', 'ghost'})
-- As different physics objects have different collision behaviors in regards to one another, the tags created here will facilitate the delineation of those differences.
function Group : set_as_physics_world ( meter , xg , yg , tags )
love.physics . setMeter ( meter or 192 )
self.tags = table.unify ( table.push ( tags , ' solid ' ) )
self.collision_tags = { }
self.trigger_tags = { }
for i , tag in ipairs ( self.tags ) do
self.collision_tags [ tag ] = { category = i , masks = { } }
self.trigger_tags [ tag ] = { category = i , triggers = { } }
end
self.world = love.physics . newWorld ( xg or 0 , yg or 0 )
self.world : setCallbacks (
function ( fa , fb , c )
local oa , ob = self : get_object_by_id ( fa : getUserData ( ) ) , self : get_object_by_id ( fb : getUserData ( ) )
if fa : isSensor ( ) or fb : isSensor ( ) then
if fa : isSensor ( ) then if oa.on_trigger_enter then oa : on_trigger_enter ( ob , c ) end end
if fb : isSensor ( ) then if ob.on_trigger_enter then ob : on_trigger_enter ( oa , c ) end end
else
if oa.on_collision_enter then oa : on_collision_enter ( ob , c ) end
if ob.on_collision_enter then ob : on_collision_enter ( oa , c ) end
end
end ,
function ( fa , fb , c )
local oa , ob = self : get_object_by_id ( fa : getUserData ( ) ) , self : get_object_by_id ( fb : getUserData ( ) )
if fa : isSensor ( ) or fb : isSensor ( ) then
if fa : isSensor ( ) then if oa.on_trigger_exit then oa : on_trigger_exit ( ob , c ) end end
if fb : isSensor ( ) then if ob.on_trigger_exit then ob : on_trigger_exit ( oa , c ) end end
else
if oa.on_collision_exit then oa : on_collision_exit ( ob , c ) end
if ob.on_collision_exit then ob : on_collision_exit ( oa , c ) end
end
end
)
return self
end
-- Enables physical collision between objects of two tags
-- on_collision_enter and on_collision_exit callbacks will be called when objects of these two tags physically collide
-- By default, every object physically collides with every other object
-- group:set_as_physics_world(192, 0, 0, {'player', 'enemy', 'projectile', 'ghost', 'solid'})
-- group:enable_collision_between('player', 'enemy')
function Group : enable_collision_between ( tag1 , tag2 )
table.delete ( self.collision_tags [ tag1 ] . masks , self.collision_tags [ tag2 ] . category )
end
-- Disables physical collision between objects of two tags
-- on_collision_enter and on_collision_exit callbacks will NOT be called when objects of these two tags pass through each other
-- group:set_as_physics_world(192, 0, 0, {'player', 'enemy', 'projectile', 'ghost', 'solid'})
-- group:disable_collision_between('ghost', 'solid')
-- group:disable_collision_between('player', 'projectile')
function Group : disable_collision_between ( tag1 , tag2 )
table.insert ( self.collision_tags [ tag1 ] . masks , self.collision_tags [ tag2 ] . category )
end
-- Enables trigger collision between objects of two tags
-- When objects have physical collision disabled between one another, you might still want to have the engine generate enter and exit events when they start/stop overlapping
-- This is the function that makes that happen
-- group:set_as_physics_world(192, 0, 0, {'player', 'enemy', 'projectile', 'ghost', 'solid'})
-- group:disable_collision_between('ghost', 'solid')
-- group:enable_trigger_between('ghost', 'solid') -> now when a ghost passes through a solid, on_trigger_enter and on_trigger_exit will be called
function Group : enable_trigger_between ( tag1 , tag2 )
table.insert ( self.trigger_tags [ tag1 ] . triggers , self.trigger_tags [ tag2 ] . category )
end
-- Disables trigger collision between objects of two tags
-- This will only work if enable_trigger_between has been called for a pair of tags
-- In general you shouldn't use this, as trigger collisions are disabled by default for all objects
function Group : disable_trigger_between ( tag1 , tag2 )
table.delete ( self.trigger_tags [ tag1 ] . triggers , self.trigger_tags [ tag2 ] . category )
end
-- Returns a table of all physics objects that collide with the segment passed in
-- This requires that the group is set as a physics world first and only works on objects initialized as physics objects (see gameobject file)
-- This function returns a table of hits, each hit is of the following format: {
-- x = hit's x position, y = hit's y position,
-- nx = hit's x normal, ny = hit's y normal,
-- fraction = a number from 0 to 1 representing the fraction of the segment where the hit happened,
-- other = the object hit by the segment
-- }
-- So if the following call group:raycast(100, 100, 800 800) hits 3 objects, it will return something like this: {
-- [1] = {x = ..., y = ..., nx = ..., ny = ..., fraction = ..., other = the 1st object hit},
-- [2] = {x = ..., y = ..., nx = ..., ny = ..., fraction = ..., other = the 2nd object hit},
-- [3] = {x = ..., y = ..., nx = ..., ny = ..., fraction = ..., other = the 3rd object hit},
-- }
-- Where ... just stands for some number.
function Group : raycast ( x1 , y1 , x2 , y2 )
if not self.world then return end
self.raycast_hitlist = { }
self.world : rayCast ( x1 , y1 , x2 , y2 , function ( fixture , x , y , nx , ny , fraction )
local hit = { }
hit.fixture = fixture
hit.x , hit.y = x , y
hit.nx , hit.ny = nx , ny
hit.fraction = fraction
table.insert ( self.raycast_hitlist , hit )
return 1
end )
local hits = { }
for _ , hit in ipairs ( self.raycast_hitlist ) do
local obj = self : get_object_by_id ( hit.fixture : getUserData ( ) )
hit.fixture = nil
hit.other = obj
table.insert ( hits , hit )
end
return hits
end