stress_at_work_analysis/exploration/ml_pipeline_classification_...

172 lines
6.2 KiB
Python

# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.cluster import KMeans
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
from machine_learning.classification_models import ClassificationModels
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# # Useful method
def treat_categorical_features(input_set):
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in input_set.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = input_set[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = input_set.drop(categorical_feature_colnames, axis=1)
return pd.concat([numerical_features, categorical_features], axis=1)
# %% [markdown]
# ## Set script's parameters
n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter)
n_sl = 3 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
model_input.columns[list(model_input.columns).index('age'):-1]
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
lime_cols
lime_col = 'limesurvey_demand_control_ratio'
clust_col = lime_col
model_input[clust_col].describe()
# %% jupyter={"source_hidden": true}
# Filter-out outlier rows by clust_col
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
plt.bar(uniq['pid'], uniq[clust_col])
# %% jupyter={"source_hidden": true}
# Get clusters by cluster col & and merge the clusters to main df
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
np.unique(km, return_counts=True)
uniq['cluster'] = km
uniq
model_input = model_input.merge(uniq[['pid', 'cluster']])
# %% jupyter={"source_hidden": true}
model_input.set_index(index_columns, inplace=True)
# %% jupyter={"source_hidden": true}
# Create dict with classification ml models
cm = ClassificationModels()
cmodels = cm.get_cmodels()
# %% jupyter={"source_hidden": true}
for k in range(n_clusters):
model_input_subset = model_input[model_input["cluster"] == k].copy()
# Takes 10th percentile and above 90th percentile as the test set -> the rest for the training set. Only two classes, seperated by z-score of 0.
model_input_subset['numerical_target'] = model_input_subset['target']
bins = [-10, 0, 10] # bins for z-scored targets
model_input_subset.loc[:, 'target'] = \
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=[0, 1], right=True)
p15 = np.percentile(model_input_subset['numerical_target'], 15)
p85 = np.percentile(model_input_subset['numerical_target'], 85)
# Treat categorical features
model_input_subset = treat_categorical_features(model_input_subset)
# Split to train, validate, and test subsets
train_set = model_input_subset[(model_input_subset['numerical_target'] > p15) & (model_input_subset['numerical_target'] < p85)].drop(['numerical_target'], axis=1)
test_set = model_input_subset[(model_input_subset['numerical_target'] <= p15) | (model_input_subset['numerical_target'] >= p85)].drop(['numerical_target'], axis=1)
train_set['target'].value_counts()
test_set['target'].value_counts()
train_x, train_y = train_set.drop(["target", "pid"], axis=1), train_set["target"]
validate_x, test_x, validate_y, test_y = \
train_test_split(test_set.drop(["target", "pid"], axis=1), test_set["target"], test_size=0.50, random_state=42)
# Impute missing values
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
train_x = imputer.fit_transform(train_x)
validate_x = imputer.fit_transform(validate_x)
test_x = imputer.fit_transform(test_x)
for model_title, model in cmodels.items():
model['model'].fit(train_x, train_y)
y_pred = model['model'].predict(validate_x)
acc = accuracy_score(validate_y, y_pred)
prec = precision_score(validate_y, y_pred)
rec = recall_score(validate_y, y_pred)
f1 = f1_score(validate_y, y_pred)
print("\n-------------------------------------\n")
print("Current cluster:", k, end="\n")
print("Current model:", model_title, end="\n")
print("Acc", acc)
print("Precision", prec)
print("Recall", rec)
print("F1", f1)
cmodels[model_title]['metrics'][0] += acc
cmodels[model_title]['metrics'][1] += prec
cmodels[model_title]['metrics'][2] += rec
cmodels[model_title]['metrics'][3] += f1
# %% jupyter={"source_hidden": true}
# Get overall results
cm.get_total_models_scores(n_clusters=n_clusters)