272 lines
6.5 KiB
Python
272 lines
6.5 KiB
Python
# ---
|
|
# jupyter:
|
|
# jupytext:
|
|
# formats: ipynb,py:percent
|
|
# text_representation:
|
|
# extension: .py
|
|
# format_name: percent
|
|
# format_version: '1.3'
|
|
# jupytext_version: 1.13.0
|
|
# kernelspec:
|
|
# display_name: straw2analysis
|
|
# language: python
|
|
# name: straw2analysis
|
|
# ---
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
# %matplotlib inline
|
|
import datetime
|
|
import importlib
|
|
import os
|
|
import sys
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
import yaml
|
|
from pyprojroot import here
|
|
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
from sklearn.metrics import mean_squared_error, r2_score
|
|
from sklearn.impute import SimpleImputer
|
|
|
|
nb_dir = os.path.split(os.getcwd())[0]
|
|
if nb_dir not in sys.path:
|
|
sys.path.append(nb_dir)
|
|
|
|
import machine_learning.features_sensor
|
|
import machine_learning.labels
|
|
import machine_learning.model
|
|
|
|
# %% [markdown]
|
|
# # RAPIDS models
|
|
|
|
# %% [markdown]
|
|
# ## PANAS negative affect
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
# model_input = pd.read_csv("../data/input_PANAS_NA.csv") # Nestandardizirani podatki - pred temeljitim čiščenjem
|
|
model_input = pd.read_csv("../data/z_input_PANAS_NA.csv") # Standardizirani podatki - pred temeljitim čiščenjem
|
|
# %% [markdown]
|
|
# ### NaNs before dropping cols and rows
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
sns.set(rc={"figure.figsize":(16, 8)})
|
|
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
nan_cols = list(model_input.loc[:, model_input.isna().all()].columns)
|
|
nan_cols
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
model_input.dropna(axis=1, how="all", inplace=True)
|
|
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
|
|
# %% [markdown]
|
|
# ### NaNs after dropping NaN cols and rows where target is NaN
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
sns.set(rc={"figure.figsize":(16, 8)})
|
|
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
#if "pid" in model_input.columns:
|
|
# index_columns.append("pid")
|
|
model_input.set_index(index_columns, inplace=True)
|
|
|
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
# fillna with mode
|
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
# one-hot encoding
|
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
if not categorical_features.empty:
|
|
categorical_features = pd.get_dummies(categorical_features)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
train_x.dtypes
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
logo = LeaveOneGroupOut()
|
|
logo.get_n_splits(
|
|
train_x,
|
|
data_y,
|
|
groups=data_groups,
|
|
)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
sum(data_y.isna())
|
|
|
|
# %% [markdown]
|
|
# ### Linear Regression
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
lin_reg_rapids = linear_model.LinearRegression()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
lin_reg_scores = cross_val_score(
|
|
lin_reg_rapids,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring='r2'
|
|
)
|
|
lin_reg_scores
|
|
np.median(lin_reg_scores)
|
|
|
|
# %% [markdown]
|
|
# ### Ridge regression
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
|
|
# %% tags=[] jupyter={"source_hidden": true}
|
|
ridge_reg_scores = cross_val_score(
|
|
ridge_reg,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
np.median(ridge_reg_scores)
|
|
|
|
# %% [markdown]
|
|
# ### Lasso
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
lasso_reg_score = cross_val_score(
|
|
lasso_reg,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
np.median(lasso_reg_score)
|
|
|
|
# %% [markdown]
|
|
# ### Bayesian Ridge
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
bayesian_ridge_reg_score = cross_val_score(
|
|
bayesian_ridge_reg,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
np.median(bayesian_ridge_reg_score)
|
|
|
|
# %% [markdown]
|
|
# ### RANSAC (outlier robust regression)
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
ransac_reg = linear_model.RANSACRegressor()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
np.median(
|
|
cross_val_score(
|
|
ransac_reg,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
)
|
|
|
|
# %% [markdown]
|
|
# ### Support vector regression
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
svr = svm.SVR()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
np.median(
|
|
cross_val_score(
|
|
svr,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
)
|
|
|
|
# %% [markdown]
|
|
# ### Kernel Ridge regression
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
kridge = kernel_ridge.KernelRidge()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
np.median(
|
|
cross_val_score(
|
|
kridge,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
)
|
|
# %% [markdown]
|
|
# ### Gaussian Process Regression
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
gpr = gaussian_process.GaussianProcessRegressor()
|
|
|
|
# %% jupyter={"source_hidden": true}
|
|
|
|
np.median(
|
|
cross_val_score(
|
|
gpr,
|
|
X=imputer.fit_transform(train_x),
|
|
y=data_y,
|
|
groups=data_groups,
|
|
cv=logo,
|
|
n_jobs=-1,
|
|
scoring="r2"
|
|
)
|
|
)
|
|
# %%
|