stress_at_work_analysis/exploration/ml_pipeline_classification_...

175 lines
6.8 KiB
Python

# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, StratifiedKFold
from sklearn.impute import SimpleImputer
from sklearn.cluster import KMeans
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
from machine_learning.classification_models import ClassificationModels
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## Set script's parameters
n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter)
cv_method_str = 'half_logo' # logo, half_logo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
model_input.columns[list(model_input.columns).index('age'):-1]
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
lime_cols
lime_col = 'limesurvey_demand_control_ratio'
clust_col = lime_col
model_input[clust_col].describe()
# %% jupyter={"source_hidden": true}
# Filter-out outlier rows by clust_col
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
plt.bar(uniq['pid'], uniq[clust_col])
# %% jupyter={"source_hidden": true}
# Get clusters by cluster col & and merge the clusters to main df
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
np.unique(km, return_counts=True)
uniq['cluster'] = km
uniq
model_input = model_input.merge(uniq[['pid', 'cluster']])
# %% jupyter={"source_hidden": true}
model_input.set_index(index_columns, inplace=True)
# %% jupyter={"source_hidden": true}
# Create dict with classification ml models
cm = ClassificationModels()
cmodels = cm.get_cmodels()
# %% jupyter={"source_hidden": true}
for k in range(n_clusters):
model_input_subset = model_input[model_input["cluster"] == k].copy()
bins = [-10, -1, 1, 10] # bins for z-scored targets
model_input_subset.loc[:, 'target'] = \
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high']
model_input_subset['target'].value_counts()
model_input_subset = model_input_subset[model_input_subset['target'] != "medium"]
model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
model_input_subset['target'].value_counts()
if cv_method_str == 'half_logo':
model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount()
model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count')
model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round()
model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"]
else:
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"]
# Treat categorical features
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = data_x[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# Establish cv method
cv_method = StratifiedKFold(n_splits=5, shuffle=True) # Defaults to 5 k-folds in cross_validate method
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
cv_method = LeaveOneGroupOut()
cv_method.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
for model_title, model in cmodels.items():
classifier = cross_validate(
model['model'],
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
print("\n-------------------------------------\n")
print("Current cluster:", k, end="\n")
print("Current model:", model_title, end="\n")
print("Acc", np.mean(classifier['test_accuracy']))
print("Precision", np.mean(classifier['test_precision']))
print("Recall", np.mean(classifier['test_recall']))
print("F1", np.mean(classifier['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(classifier['test_accuracy'], n_sl)[:n_sl]))
cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy'])
cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision'])
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_recall'])
cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1'])
# %% jupyter={"source_hidden": true}
# Get overall results
cm.get_total_models_scores(n_clusters=n_clusters)