stress_at_work_analysis/exploration/communication.py

127 lines
2.4 KiB
Python

# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.11.2
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %%
import os
import sys
import matplotlib.pyplot as plt
# %%
import seaborn as sns
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
# %%
from features.communication import *
# %% [markdown]
# # Example of communication data and feature calculation
# %%
df_calls = get_call_data(["nokia_0000003"])
print(df_calls)
# %%
count_comms(df_calls)
# %%
df_sms = get_sms_data(["nokia_0000003"])
count_comms(df_sms)
# %% [markdown]
# # Call data
# %%
import participants.query_db
# %%
participants_inactive_usernames = participants.query_db.get_usernames()
df_calls_inactive = get_call_data(participants_inactive_usernames)
# %%
df_calls_features = count_comms(df_calls_inactive)
df_calls_features.head()
# %%
df_calls_features.describe()
# %%
calls_number = pd.wide_to_long(
df_calls_features.reset_index(),
i="participant_id",
j="call_type",
stubnames="no",
sep="_",
suffix="\D+",
)
# %%
sns.displot(calls_number, x="no", hue="call_type", binwidth=5, element="step", height=8)
# %%
calls_duration = pd.wide_to_long(
df_calls_features.reset_index(),
i="participant_id",
j="call_type",
stubnames="duration",
sep="_",
suffix="\D+",
)
sns.displot(
calls_duration,
x="duration",
hue="call_type",
multiple="dodge",
height=8,
log_scale=(True, False),
)
# %% [markdown]
# ## Most frequent contacts by participant
# %%
df_calls_inactive = enumerate_contacts(df_calls_inactive)
df_calls_inactive.tail()
# %%
df_calls_frequent = df_calls_inactive.query("contact_id < 5")
# %%
sns.boxplot(x="contact_id", y="freq", data=df_calls_frequent)
# %% [markdown]
# # SMS data
# %%
df_sms_inactive = get_sms_data(participants_inactive_usernames)
df_sms_features = count_comms(df_sms_inactive)
df_sms_features.describe()
# %%
sms_number = pd.wide_to_long(
df_sms_features.reset_index(),
i="participant_id",
j="message_type",
stubnames="no",
sep="_",
suffix="\D+",
)
sns.displot(
sms_number, x="no", hue="message_type", binwidth=5, element="step", height=8
)