# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.14.5 # kernelspec: # display_name: straw2analysis # language: python # name: straw2analysis # --- # %% import datetime import seaborn as sns import participants.query_db from features.esm import clean_up_esm, get_esm_data, preprocess_esm from features.esm_JCQ import reverse_jcq_demand_control_scoring from features.esm_SAM import extract_stressful_events # import os # import sys # nb_dir = os.path.split(os.getcwd())[0] # if nb_dir not in sys.path: # sys.path.append(nb_dir) # %% save_figs = True # %% participants_inactive_usernames = participants.query_db.get_usernames( collection_start=datetime.date.fromisoformat("2020-08-01") ) df_esm_inactive = get_esm_data(participants_inactive_usernames) # %% df_esm_preprocessed = preprocess_esm(df_esm_inactive) # %% [markdown] # # PANAS # %% df_esm_PANAS = df_esm_preprocessed[ (df_esm_preprocessed["questionnaire_id"] == 8) | (df_esm_preprocessed["questionnaire_id"] == 9) ] df_esm_PANAS_clean = clean_up_esm(df_esm_PANAS) # %% [markdown] # Group by participants, date, and subscale and calculate daily means. # %% df_esm_PANAS_daily_means = ( df_esm_PANAS_clean.groupby(["participant_id", "date_lj", "questionnaire_id"]) .esm_user_answer_numeric.agg("mean") .reset_index() .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"}) ) # %% [markdown] # Next, calculate mean, median, and standard deviation across all days for each participant. # %% df_esm_PANAS_summary_participant = ( df_esm_PANAS_daily_means.groupby(["participant_id", "questionnaire_id"]) .esm_numeric_mean.agg(["mean", "median", "std"]) .reset_index(col_level=1) ) df_esm_PANAS_summary_participant[ "PANAS subscale" ] = df_esm_PANAS_daily_means.questionnaire_id.astype("category").cat.rename_categories( {8.0: "positive affect", 9.0: "negative affect"} ) # %% fig1 = sns.displot( data=df_esm_PANAS_summary_participant, x="mean", hue="PANAS subscale", binwidth=0.2 ) fig1.set_axis_labels(x_var="participant mean", y_var="frequency") if save_figs: fig1.figure.savefig("PANAS_mean_participant.pdf", dpi=300) # %% sns.displot( data=df_esm_PANAS_summary_participant, x="median", hue="PANAS subscale", binwidth=0.2, ) # %% fig2 = sns.displot( data=df_esm_PANAS_summary_participant, x="std", hue="PANAS subscale", binwidth=0.05 ) fig2.set_axis_labels(x_var="participant standard deviation", y_var="frequency") if save_figs: fig2.figure.savefig("PANAS_std_participant.pdf", dpi=300) # %% df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1] # %% [markdown] # # Stress appraisal measure # %% df_SAM_all = extract_stressful_events(df_esm_inactive) # %% df_SAM_all.head() # %% df_esm_SAM = df_esm_preprocessed[ (df_esm_preprocessed["questionnaire_id"] >= 87) & (df_esm_preprocessed["questionnaire_id"] <= 93) ] df_esm_SAM_clean = clean_up_esm(df_esm_SAM) # %% [markdown] # ## Stressful events # %% df_esm_SAM_event = df_esm_SAM_clean[df_esm_SAM_clean["questionnaire_id"] == 87].assign( stressful_event=lambda x: (x.esm_user_answer_numeric > 0) ) # %% df_esm_SAM_daily_events = ( df_esm_SAM_event.groupby(["participant_id", "date_lj"]) .stressful_event.agg("mean") .reset_index() .rename(columns={"stressful_event": "SAM_event_ratio"}) ) # %% [markdown] # Calculate the daily mean of YES (1) or NO (0) answers to the question about stressful events. This is then the daily ratio of EMA sessions that included a stressful event. # %% df_esm_SAM_event_summary_participant = ( df_esm_SAM_daily_events.groupby(["participant_id"]) .SAM_event_ratio.agg(["mean", "median", "std"]) .reset_index(col_level=1) ) # %% fig6 = sns.displot(data=df_esm_SAM_event_summary_participant, x="mean", binwidth=0.1) fig6.set_axis_labels( x_var="participant proportion of stressful events", y_var="frequency" ) if save_figs: fig6.figure.savefig("SAM_events_mean_participant.pdf", dpi=300) # %% sns.displot(data=df_esm_SAM_event_summary_participant, x="std", binwidth=0.05) # %% [markdown] # ### Threat and challenge # %% [markdown] # * Example of threat: "Did this event make you feel anxious?" # * Example of challenge: "How eager are you to tackle this event?" # * Possible answers: # 0 - Not at all, # 1 - Slightly, # 2 - Moderately, # 3 - Considerably, # 4 - Extremely # %% df_esm_SAM_daily = ( df_esm_SAM_clean.groupby(["participant_id", "date_lj", "questionnaire_id"]) .esm_user_answer_numeric.agg("mean") .reset_index() .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"}) ) # %% df_esm_SAM_daily_threat_challenge = df_esm_SAM_daily[ (df_esm_SAM_daily["questionnaire_id"] == 88) | (df_esm_SAM_daily["questionnaire_id"] == 89) ] # %% df_esm_SAM_summary_participant = ( df_esm_SAM_daily.groupby(["participant_id", "questionnaire_id"]) .esm_numeric_mean.agg(["mean", "median", "std"]) .reset_index(col_level=1) ) # %% df_esm_SAM_threat_challenge_summary_participant = df_esm_SAM_summary_participant[ (df_esm_SAM_summary_participant["questionnaire_id"] == 88) | (df_esm_SAM_summary_participant["questionnaire_id"] == 89) ] df_esm_SAM_threat_challenge_summary_participant[ "event subscale" ] = df_esm_SAM_threat_challenge_summary_participant.questionnaire_id.astype( "category" ).cat.rename_categories( {88: "threat", 89: "challenge"} ) # %% sns.displot( data=df_esm_SAM_threat_challenge_summary_participant, x="mean", hue="event subscale", binwidth=0.2, ) # %% fig3 = sns.displot( data=df_esm_SAM_threat_challenge_summary_participant, x="std", hue="event subscale", binwidth=0.1, ) fig3.set_axis_labels(x_var="participant standard deviation", y_var="frequency") if save_figs: fig3.figure.savefig("SAM_std_participant.pdf", dpi=300) # %% [markdown] # ## Stressfulness of period # %% df_esm_SAM_period_summary_participant = df_esm_SAM_summary_participant[ df_esm_SAM_summary_participant["questionnaire_id"] == 93 ] # %% sns.displot(data=df_esm_SAM_period_summary_participant, x="mean", binwidth=0.2) # %% sns.displot(data=df_esm_SAM_period_summary_participant, x="std", binwidth=0.1) # %% [markdown] # # Job demand and control # %% df_esm_JCQ_demand_control = df_esm_preprocessed[ (df_esm_preprocessed["questionnaire_id"] >= 10) & (df_esm_preprocessed["questionnaire_id"] <= 11) ] df_esm_JCQ_demand_control_clean = clean_up_esm(df_esm_JCQ_demand_control) # %% df_esm_JCQ_demand_control_reversed = reverse_jcq_demand_control_scoring( df_esm_JCQ_demand_control_clean ) # %% df_esm_JCQ_daily = ( df_esm_JCQ_demand_control_reversed.groupby( ["participant_id", "date_lj", "questionnaire_id"] ) .esm_user_score.agg("mean") .reset_index() .rename(columns={"esm_user_score": "esm_score_mean"}) ) df_esm_JCQ_summary_participant = ( df_esm_JCQ_daily.groupby(["participant_id", "questionnaire_id"]) .esm_score_mean.agg(["mean", "median", "std"]) .reset_index(col_level=1) ) df_esm_JCQ_summary_participant[ "JCQ subscale" ] = df_esm_JCQ_summary_participant.questionnaire_id.astype( "category" ).cat.rename_categories( {10: "job demand", 11: "job control"} ) # %% fig4 = sns.displot( data=df_esm_JCQ_summary_participant, x="mean", hue="JCQ subscale", binwidth=0.1, ) fig4.set_axis_labels(x_var="participant mean", y_var="frequency") if save_figs: fig4.figure.savefig("JCQ_mean_participant.pdf", dpi=300) # %% fig5 = sns.displot( data=df_esm_JCQ_summary_participant, x="std", hue="JCQ subscale", binwidth=0.05, ) fig6.set_axis_labels(x_var="participant standard deviation", y_var="frequency") if save_figs: fig5.figure.savefig("JCQ_std_participant.pdf", dpi=300) # %%