# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.0 # kernelspec: # display_name: Python 3.10.8 ('straw2analysis') # language: python # name: python3 # --- # %% # %matplotlib inline import datetime import importlib import os import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import yaml from pyprojroot import here from sklearn import linear_model, svm, kernel_ridge, gaussian_process from sklearn.model_selection import LeaveOneGroupOut, LeavePGroupsOut, cross_val_score, cross_validate from sklearn.metrics import mean_squared_error, r2_score from sklearn.impute import SimpleImputer from sklearn.dummy import DummyRegressor import xgboost as xg from pathlib import Path nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) import machine_learning.features_sensor import machine_learning.labels import machine_learning.model import machine_learning.helper # %% tags=["active-ipynb"] # filename = Path("E:/STRAWresults/inputData/stressfulness_event/input_appraisal_stressfulness_event_mean.csv") # %% final_scores = machine_learning.helper.run_all_regression_models(filename) # %% final_scores.index.name = "metric" final_scores = final_scores.set_index(["method", final_scores.index]) # %% final_scores.to_csv("event_stressfulness_scores.csv")