|
|
|
@ -6,7 +6,7 @@
|
|
|
|
|
# extension: .py
|
|
|
|
|
# format_name: percent
|
|
|
|
|
# format_version: '1.3'
|
|
|
|
|
# jupytext_version: 1.12.0
|
|
|
|
|
# jupytext_version: 1.13.0
|
|
|
|
|
# kernelspec:
|
|
|
|
|
# display_name: straw2analysis
|
|
|
|
|
# language: python
|
|
|
|
@ -21,11 +21,15 @@ import os
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import seaborn as sns
|
|
|
|
|
import yaml
|
|
|
|
|
from pyprojroot import here
|
|
|
|
|
from sklearn import linear_model
|
|
|
|
|
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
|
|
|
from sklearn.metrics import mean_squared_error, r2_score
|
|
|
|
|
from sklearn.impute import SimpleImputer
|
|
|
|
|
|
|
|
|
|
nb_dir = os.path.split(os.getcwd())[0]
|
|
|
|
|
if nb_dir not in sys.path:
|
|
|
|
@ -257,4 +261,195 @@ model_validation.cross_validate()
|
|
|
|
|
# %%
|
|
|
|
|
model_validation.groups
|
|
|
|
|
|
|
|
|
|
# %% [markdown]
|
|
|
|
|
# # Use RAPIDS
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
with open(here("rapids/config.yaml"), "r") as file:
|
|
|
|
|
rapids_config = yaml.safe_load(file)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
for key in rapids_config.keys():
|
|
|
|
|
if isinstance(rapids_config[key], dict): # Remove top-level configs
|
|
|
|
|
if ("PROVIDERS" in rapids_config[key]): # Retain features (that have providers)
|
|
|
|
|
if rapids_config[key]["PROVIDERS"]: # Remove non-implemented features
|
|
|
|
|
for provider in rapids_config[key]["PROVIDERS"]:
|
|
|
|
|
if rapids_config[key]["PROVIDERS"][provider]["COMPUTE"]: # Check that the features were actually calculated
|
|
|
|
|
if "FEATURES" in rapids_config[key]["PROVIDERS"][provider]:
|
|
|
|
|
print(key)
|
|
|
|
|
print(provider)
|
|
|
|
|
print(rapids_config[key]["PROVIDERS"][provider]["FEATURES"])
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids = pd.read_csv(here("rapids/data/processed/features/all_participants/all_sensor_features.csv"), parse_dates=["local_segment_start_datetime", "local_segment_end_datetime"])
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids.columns
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids = features_rapids.assign(date_lj=lambda x: x.local_segment_start_datetime.dt.date)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids["participant_id"] = features_rapids["pid"].str.extract("(\d+)")
|
|
|
|
|
features_rapids["participant_id"] = pd.to_numeric(features_rapids["participant_id"])
|
|
|
|
|
features_rapids.set_index(["participant_id", "date_lj"], inplace=True)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
with open("../machine_learning/config/minimal_labels.yaml", "r") as file:
|
|
|
|
|
labels_params = yaml.safe_load(file)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
labels = machine_learning.labels.Labels(**labels_params)
|
|
|
|
|
labels.set_participants_label("all")
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
labels.aggregate_labels(cached=True)
|
|
|
|
|
labels_read = labels.get_aggregated_labels()
|
|
|
|
|
labels_read = labels_read.reset_index()
|
|
|
|
|
labels_read["date_lj"] = labels_read["date_lj"].dt.date
|
|
|
|
|
labels_read.set_index(["participant_id", "date_lj"], inplace=True)
|
|
|
|
|
# date_lj column is parsed as a date and represented as Timestamp, when read from csv.
|
|
|
|
|
# When calculated, it is represented as date.
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids.shape
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
labels_read.shape
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_labels = features_rapids.join(labels_read, how="inner").reset_index()
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_labels.shape
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_labels.columns
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
feature_columns = features_labels.columns[6:-3]
|
|
|
|
|
label_column = "NA"
|
|
|
|
|
group_column = "pid"
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
lin_reg_rapids = linear_model.LinearRegression()
|
|
|
|
|
logo = LeaveOneGroupOut()
|
|
|
|
|
logo.get_n_splits(
|
|
|
|
|
features_labels[feature_columns],
|
|
|
|
|
features_labels[label_column],
|
|
|
|
|
groups=features_labels[group_column],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
cross_val_score(
|
|
|
|
|
lin_reg_rapids,
|
|
|
|
|
X=imputer.fit_transform(features_labels[feature_columns]),
|
|
|
|
|
y=features_labels[label_column],
|
|
|
|
|
groups=features_labels[group_column],
|
|
|
|
|
cv=logo,
|
|
|
|
|
n_jobs=-1,
|
|
|
|
|
scoring="r2",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
sns.set(rc={"figure.figsize":(16, 8)})
|
|
|
|
|
sns.heatmap(features_labels[feature_columns].isna(), cbar=False)
|
|
|
|
|
|
|
|
|
|
# %% [markdown] tags=[]
|
|
|
|
|
# ```yaml
|
|
|
|
|
# ALL_CLEANING_INDIVIDUAL:
|
|
|
|
|
# PROVIDERS:
|
|
|
|
|
# RAPIDS:
|
|
|
|
|
# COMPUTE: True
|
|
|
|
|
# IMPUTE_SELECTED_EVENT_FEATURES: # Fill NAs with 0 only for event-based features, see table below
|
|
|
|
|
# COMPUTE: True
|
|
|
|
|
# MIN_DATA_YIELDED_MINUTES_TO_IMPUTE: 0.33 # Any feature value in a time segment instance with phone data yield > [MIN_DATA_YIELDED_MINUTES_TO_IMPUTE] will be replaced with a zero.
|
|
|
|
|
# COLS_NAN_THRESHOLD: 0.3 # Discard columns with missing value ratios higher than [COLS_NAN_THRESHOLD]. Set to 1 to disable
|
|
|
|
|
# COLS_VAR_THRESHOLD: True # Set to True to discard columns with zero variance
|
|
|
|
|
# ROWS_NAN_THRESHOLD: 1 # Discard rows with missing value ratios higher than [ROWS_NAN_THRESHOLD]. Set to 1 to disable
|
|
|
|
|
# DATA_YIELD_FEATURE: RATIO_VALID_YIELDED_HOURS # RATIO_VALID_YIELDED_HOURS or RATIO_VALID_YIELDED_MINUTES
|
|
|
|
|
# DATA_YIELD_RATIO_THRESHOLD: 0.3 # Discard rows with ratiovalidyieldedhours or ratiovalidyieldedminutes feature less than [DATA_YIELD_RATIO_THRESHOLD]. The feature name is determined by [DATA_YIELD_FEATURE] parameter. Set to 0 to disable
|
|
|
|
|
# DROP_HIGHLY_CORRELATED_FEATURES:
|
|
|
|
|
# COMPUTE: False
|
|
|
|
|
# MIN_OVERLAP_FOR_CORR_THRESHOLD: 0.5
|
|
|
|
|
# CORR_THRESHOLD: 0.95
|
|
|
|
|
# SRC_SCRIPT: src/features/all_cleaning_individual/rapids/main.R
|
|
|
|
|
# ```
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_rapids_cleaned = pd.read_csv(here("rapids/data/processed/features/all_participants/all_sensor_features_cleaned_rapids.csv"), parse_dates=["local_segment_start_datetime", "local_segment_end_datetime"])
|
|
|
|
|
features_rapids_cleaned = features_rapids_cleaned.assign(date_lj=lambda x: x.local_segment_start_datetime.dt.date)
|
|
|
|
|
features_rapids_cleaned["participant_id"] = features_rapids_cleaned["pid"].str.extract("(\d+)")
|
|
|
|
|
features_rapids_cleaned["participant_id"] = pd.to_numeric(features_rapids_cleaned["participant_id"])
|
|
|
|
|
features_rapids_cleaned.set_index(["participant_id", "date_lj"], inplace=True)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_cleaned_labels = features_rapids_cleaned.join(labels_read, how="inner").reset_index()
|
|
|
|
|
feature_clean_columns = features_cleaned_labels.columns[6:-3]
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
print(feature_columns.shape)
|
|
|
|
|
print(feature_clean_columns.shape)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
sns.set(rc={"figure.figsize":(16, 8)})
|
|
|
|
|
sns.heatmap(features_cleaned_labels[feature_clean_columns].isna(), cbar=False)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
lin_reg_rapids_clean = linear_model.LinearRegression()
|
|
|
|
|
logo = LeaveOneGroupOut()
|
|
|
|
|
logo.get_n_splits(
|
|
|
|
|
features_cleaned_labels[feature_clean_columns],
|
|
|
|
|
features_cleaned_labels[label_column],
|
|
|
|
|
groups=features_cleaned_labels[group_column],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
features_clean_imputed = imputer.fit_transform(features_cleaned_labels[feature_clean_columns])
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
cross_val_score(
|
|
|
|
|
lin_reg_rapids_clean,
|
|
|
|
|
X=features_clean_imputed,
|
|
|
|
|
y=features_cleaned_labels[label_column],
|
|
|
|
|
groups=features_cleaned_labels[group_column],
|
|
|
|
|
cv=logo,
|
|
|
|
|
n_jobs=-1,
|
|
|
|
|
scoring="r2",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
lin_reg_full = linear_model.LinearRegression()
|
|
|
|
|
lin_reg_full.fit(features_clean_imputed,features_cleaned_labels[label_column])
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
NA_pred = lin_reg_full.predict(features_clean_imputed)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
# The coefficients
|
|
|
|
|
print("Coefficients: \n", lin_reg_full.coef_)
|
|
|
|
|
# The mean squared error
|
|
|
|
|
print("Mean squared error: %.2f" % mean_squared_error(features_cleaned_labels[label_column], NA_pred))
|
|
|
|
|
# The coefficient of determination: 1 is perfect prediction
|
|
|
|
|
print("Coefficient of determination: %.2f" % r2_score(features_cleaned_labels[label_column], NA_pred))
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
feature_clean_columns[np.argmax(lin_reg_full.coef_)]
|
|
|
|
|
|
|
|
|
|
# %% [markdown]
|
|
|
|
|
# Ratio between stationary time and total location sensed time. A lat/long coordinate pair is labeled as stationary if its speed (distance/time) to the next coordinate pair is less than 1km/hr. A higher value represents a more stationary routine.
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
plt.scatter(features_clean_imputed[:,np.argmax(lin_reg_full.coef_)], features_cleaned_labels[label_column], color="black")
|
|
|
|
|
plt.scatter(features_clean_imputed[:,np.argmax(lin_reg_full.coef_)], NA_pred, color="red", linewidth=3)
|
|
|
|
|
|
|
|
|
|
plt.xticks()
|
|
|
|
|
plt.yticks()
|
|
|
|
|
|
|
|
|
|
fig = plt.gcf()
|
|
|
|
|
fig.set_size_inches(18.5, 10.5)
|
|
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|