Compare commits
No commits in common. "c66e046014943d2be1eade5019d4bd937cec4238" and "297eb459338ea5624ba3699e826ae3d9931a81a1" have entirely different histories.
c66e046014
...
297eb45933
|
@ -3,5 +3,6 @@
|
||||||
<component name="VcsDirectoryMappings">
|
<component name="VcsDirectoryMappings">
|
||||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||||
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
|
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
|
||||||
|
<mapping directory="$PROJECT_DIR$/rapids/calculatingfeatures" vcs="Git" />
|
||||||
</component>
|
</component>
|
||||||
</project>
|
</project>
|
|
@ -1,8 +1,9 @@
|
||||||
name: straw2analysis
|
name: straw2analysis
|
||||||
channels:
|
channels:
|
||||||
|
- defaults
|
||||||
- conda-forge
|
- conda-forge
|
||||||
dependencies:
|
dependencies:
|
||||||
- python=3.11
|
- python=3.9
|
||||||
- black
|
- black
|
||||||
- isort
|
- isort
|
||||||
- flake8
|
- flake8
|
||||||
|
@ -23,4 +24,3 @@ dependencies:
|
||||||
- sqlalchemy
|
- sqlalchemy
|
||||||
- statsmodels
|
- statsmodels
|
||||||
- tabulate
|
- tabulate
|
||||||
- xgboost
|
|
|
@ -15,34 +15,91 @@
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
# %matplotlib inline
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import importlib
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import xgboost as xg
|
import seaborn as sns
|
||||||
from machine_learning.helper import prepare_regression_model_input
|
import yaml
|
||||||
from sklearn import gaussian_process, kernel_ridge, linear_model, svm
|
from pyprojroot import here
|
||||||
from sklearn.dummy import DummyRegressor
|
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
||||||
|
from sklearn.metrics import mean_squared_error, r2_score
|
||||||
from sklearn.impute import SimpleImputer
|
from sklearn.impute import SimpleImputer
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
from sklearn.dummy import DummyRegressor
|
||||||
|
import xgboost as xg
|
||||||
# from IPython.core.interactiveshell import InteractiveShell
|
from IPython.core.interactiveshell import InteractiveShell
|
||||||
# InteractiveShell.ast_node_interactivity = "all"
|
InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
if nb_dir not in sys.path:
|
if nb_dir not in sys.path:
|
||||||
sys.path.append(nb_dir)
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
import machine_learning.features_sensor
|
||||||
model_input = pd.read_csv(
|
import machine_learning.labels
|
||||||
"../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv"
|
import machine_learning.model
|
||||||
)
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # RAPIDS models
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## PANAS negative affect
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
cv_method = "half_logo" # logo, half_logo, 5kfold
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
#if "pid" in model_input.columns:
|
||||||
|
# index_columns.append("pid")
|
||||||
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
|
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
||||||
|
if cv_method == 'logo':
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
|
else:
|
||||||
|
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||||
|
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||||
|
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
train_x.dtypes
|
||||||
|
|
||||||
train_x, data_y, data_groups = prepare_regression_model_input(model_input, cv_method)
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
logo = LeaveOneGroupOut()
|
logo = LeaveOneGroupOut()
|
||||||
logo.get_n_splits(
|
logo.get_n_splits(
|
||||||
|
@ -52,7 +109,7 @@ logo.get_n_splits(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Defaults to 5 k folds in cross_validate method
|
# Defaults to 5 k folds in cross_validate method
|
||||||
if cv_method != "logo" and cv_method != "half_logo":
|
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||||
logo = None
|
logo = None
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
|
@ -63,7 +120,7 @@ sum(data_y.isna())
|
||||||
dummy_regr = DummyRegressor(strategy="mean")
|
dummy_regr = DummyRegressor(strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
dummy_regressor = cross_validate(
|
dummy_regressor = cross_validate(
|
||||||
|
@ -73,26 +130,12 @@ dummy_regressor = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
||||||
np.median(dummy_regressor["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(dummy_regressor['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(dummy_regressor["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(dummy_regressor["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(dummy_regressor["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Linear Regression
|
# ### Linear Regression
|
||||||
|
@ -100,7 +143,7 @@ print("R2", np.median(dummy_regressor["test_r2"]))
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
lin_reg_rapids = linear_model.LinearRegression()
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_scores = cross_validate(
|
lin_reg_scores = cross_validate(
|
||||||
|
@ -110,33 +153,19 @@ lin_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(lin_reg_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(lin_reg_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(lin_reg_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(lin_reg_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(lin_reg_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Linear Regression
|
# ### XGBRegressor Linear Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_r = xg.XGBRegressor(objective="reg:squarederror", n_estimators=10)
|
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_reg_scores = cross_validate(
|
xgb_reg_scores = cross_validate(
|
||||||
|
@ -146,33 +175,19 @@ xgb_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(xgb_reg_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(xgb_reg_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(xgb_reg_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(xgb_reg_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(xgb_reg_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Pseudo Huber Error Regression
|
# ### XGBRegressor Pseudo Huber Error Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective="reg:pseudohubererror", n_estimators=10)
|
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
|
@ -182,32 +197,18 @@ xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(xgb_psuedo_huber_reg_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Ridge regression
|
# ### Ridge regression
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
# %% tags=[] jupyter={"source_hidden": true}
|
||||||
ridge_reg_scores = cross_validate(
|
ridge_reg_scores = cross_validate(
|
||||||
|
@ -217,26 +218,12 @@ ridge_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(ridge_reg_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(ridge_reg_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(ridge_reg_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(ridge_reg_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(ridge_reg_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Lasso
|
# ### Lasso
|
||||||
|
@ -252,26 +239,12 @@ lasso_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
||||||
np.median(lasso_reg_score["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(lasso_reg_score['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(lasso_reg_score["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(lasso_reg_score["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(lasso_reg_score["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Bayesian Ridge
|
# ### Bayesian Ridge
|
||||||
|
@ -287,26 +260,12 @@ bayesian_ridge_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
||||||
np.median(bayesian_ridge_reg_score["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(bayesian_ridge_reg_score["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(bayesian_ridge_reg_score["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(bayesian_ridge_reg_score["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### RANSAC (outlier robust regression)
|
# ### RANSAC (outlier robust regression)
|
||||||
|
@ -322,26 +281,12 @@ ransac_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(ransac_reg_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(ransac_reg_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(ransac_reg_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(ransac_reg_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(ransac_reg_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Support vector regression
|
# ### Support vector regression
|
||||||
|
@ -357,25 +302,12 @@ svr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error", np.median(svr_scores["test_neg_mean_squared_error"])
|
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
||||||
)
|
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
||||||
print(
|
print("R2", np.median(svr_scores['test_r2']))
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(svr_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(svr_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(svr_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Kernel Ridge regression
|
# ### Kernel Ridge regression
|
||||||
|
@ -391,26 +323,12 @@ kridge_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error",
|
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
||||||
np.median(kridge_scores["test_neg_mean_squared_error"]),
|
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
||||||
)
|
print("R2", np.median(kridge_scores['test_r2']))
|
||||||
print(
|
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(kridge_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(kridge_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(kridge_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Gaussian Process Regression
|
# ### Gaussian Process Regression
|
||||||
|
@ -427,24 +345,11 @@ gpr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=(
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
"r2",
|
|
||||||
"neg_mean_squared_error",
|
|
||||||
"neg_mean_absolute_error",
|
|
||||||
"neg_root_mean_squared_error",
|
|
||||||
),
|
|
||||||
)
|
)
|
||||||
print(
|
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
||||||
"Negative Mean Squared Error", np.median(gpr_scores["test_neg_mean_squared_error"])
|
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
||||||
)
|
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
||||||
print(
|
print("R2", np.median(gpr_scores['test_r2']))
|
||||||
"Negative Mean Absolute Error",
|
|
||||||
np.median(gpr_scores["test_neg_mean_absolute_error"]),
|
|
||||||
)
|
|
||||||
print(
|
|
||||||
"Negative Root Mean Squared Error",
|
|
||||||
np.median(gpr_scores["test_neg_root_mean_squared_error"]),
|
|
||||||
)
|
|
||||||
print("R2", np.median(gpr_scores["test_r2"]))
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
|
@ -1,18 +1,15 @@
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble, naive_bayes, neighbors, tree
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, cross_validate
|
||||||
|
from sklearn.metrics import mean_squared_error, r2_score
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
from sklearn.dummy import DummyRegressor, DummyClassifier
|
||||||
|
|
||||||
|
from xgboost import XGBRegressor, XGBClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from sklearn import (
|
import numpy as np
|
||||||
ensemble,
|
|
||||||
gaussian_process,
|
|
||||||
kernel_ridge,
|
|
||||||
linear_model,
|
|
||||||
naive_bayes,
|
|
||||||
svm,
|
|
||||||
)
|
|
||||||
from sklearn.dummy import DummyClassifier, DummyRegressor
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
|
||||||
from xgboost import XGBClassifier, XGBRegressor
|
|
||||||
|
|
||||||
|
|
||||||
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
@ -68,64 +65,28 @@ def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> P
|
||||||
full_path = folder / export_filename
|
full_path = folder / export_filename
|
||||||
return full_path
|
return full_path
|
||||||
|
|
||||||
|
|
||||||
def insert_row(df, row):
|
def insert_row(df, row):
|
||||||
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
||||||
|
|
||||||
|
def prepare_regression_model_input(input_csv):
|
||||||
|
|
||||||
def prepare_regression_model_input(model_input, cv_method="logo"):
|
model_input = pd.read_csv(input_csv)
|
||||||
index_columns = [
|
|
||||||
"local_segment",
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
"local_segment_label",
|
|
||||||
"local_segment_start_datetime",
|
|
||||||
"local_segment_end_datetime",
|
|
||||||
]
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
if cv_method == "logo":
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
data_x, data_y, data_groups = (
|
|
||||||
model_input.drop(["target", "pid"], axis=1),
|
|
||||||
model_input["target"],
|
|
||||||
model_input["pid"],
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
model_input["pid_index"] = model_input.groupby("pid").cumcount()
|
|
||||||
model_input["pid_count"] = model_input.groupby("pid")["pid"].transform("count")
|
|
||||||
|
|
||||||
model_input["pid_index"] = (
|
categorical_feature_colnames = ["gender", "startlanguage", "limesurvey_demand_control_ratio_quartile"]
|
||||||
model_input["pid_index"] / model_input["pid_count"] + 1
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
).round()
|
|
||||||
model_input["pid_half"] = (
|
|
||||||
model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
|
||||||
)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = (
|
|
||||||
model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1),
|
|
||||||
model_input["target"],
|
|
||||||
model_input["pid_half"],
|
|
||||||
)
|
|
||||||
|
|
||||||
categorical_feature_colnames = [
|
|
||||||
"gender",
|
|
||||||
"startlanguage",
|
|
||||||
"limesurvey_demand_control_ratio_quartile",
|
|
||||||
]
|
|
||||||
additional_categorical_features = [
|
|
||||||
col
|
|
||||||
for col in data_x.columns
|
|
||||||
if "mostcommonactivity" in col or "homelabel" in col
|
|
||||||
]
|
|
||||||
categorical_feature_colnames += additional_categorical_features
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
#TODO: check whether limesurvey_demand_control_ratio_quartile NaNs could be replaced meaningfully
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
# fillna with mode
|
# fillna with mode
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
# one-hot encoding
|
# one-hot encoding
|
||||||
categorical_features = categorical_features.apply(
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
lambda col: col.astype("category")
|
|
||||||
)
|
|
||||||
if not categorical_features.empty:
|
if not categorical_features.empty:
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
@ -147,7 +108,7 @@ def run_all_regression_models(input_csv):
|
||||||
data_y,
|
data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
)
|
)
|
||||||
metrics = ["r2", "neg_mean_absolute_error", "neg_root_mean_squared_error"]
|
metrics = ['r2', 'neg_mean_absolute_error', 'neg_root_mean_squared_error']
|
||||||
test_metrics = ["test_" + metric for metric in metrics]
|
test_metrics = ["test_" + metric for metric in metrics]
|
||||||
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
||||||
|
|
||||||
|
@ -160,13 +121,13 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Dummy model:")
|
print("Dummy model:")
|
||||||
print("R^2: ", np.nanmedian(dummy_regr_scores["test_r2"]))
|
print("R^2: ", np.nanmedian(dummy_regr_scores['test_r2']))
|
||||||
|
|
||||||
scores_df = pd.DataFrame(dummy_regr_scores)[test_metrics]
|
scores_df = pd.DataFrame(dummy_regr_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "dummy"
|
scores_df["method"] = "dummy"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -178,17 +139,17 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Linear regression:")
|
print("Linear regression:")
|
||||||
print("R^2: ", np.nanmedian(lin_reg_scores["test_r2"]))
|
print("R^2: ", np.nanmedian(lin_reg_scores['test_r2']))
|
||||||
|
|
||||||
scores_df = pd.DataFrame(lin_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(lin_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "linear_reg"
|
scores_df["method"] = "linear_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||||
ridge_reg_scores = cross_validate(
|
ridge_reg_scores = cross_validate(
|
||||||
ridge_reg,
|
ridge_reg,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
|
@ -196,15 +157,16 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Ridge regression")
|
print("Ridge regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ridge_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(ridge_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "ridge_reg"
|
scores_df["method"] = "ridge_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||||
lasso_reg_score = cross_validate(
|
lasso_reg_score = cross_validate(
|
||||||
lasso_reg,
|
lasso_reg,
|
||||||
|
@ -213,12 +175,12 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Lasso regression")
|
print("Lasso regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(lasso_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(lasso_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "lasso_reg"
|
scores_df["method"] = "lasso_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -230,12 +192,12 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Bayesian Ridge")
|
print("Bayesian Ridge")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(bayesian_ridge_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(bayesian_ridge_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "bayesian_ridge"
|
scores_df["method"] = "bayesian_ridge"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -247,23 +209,29 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("RANSAC (outlier robust regression)")
|
print("RANSAC (outlier robust regression)")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ransac_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(ransac_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "RANSAC"
|
scores_df["method"] = "RANSAC"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
svr = svm.SVR()
|
svr = svm.SVR()
|
||||||
svr_score = cross_validate(
|
svr_score = cross_validate(
|
||||||
svr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
svr,
|
||||||
|
X=data_x,
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Support vector regression")
|
print("Support vector regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(svr_score)[test_metrics]
|
scores_df = pd.DataFrame(svr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "SVR"
|
scores_df["method"] = "SVR"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -275,56 +243,80 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Kernel Ridge regression")
|
print("Kernel Ridge regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(kridge_score)[test_metrics]
|
scores_df = pd.DataFrame(kridge_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "kernel_ridge"
|
scores_df["method"] = "kernel_ridge"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
gpr = gaussian_process.GaussianProcessRegressor()
|
||||||
gpr_score = cross_validate(
|
gpr_score = cross_validate(
|
||||||
gpr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
gpr,
|
||||||
|
X=data_x,
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Gaussian Process Regression")
|
print("Gaussian Process Regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(gpr_score)[test_metrics]
|
scores_df = pd.DataFrame(gpr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "gaussian_proc"
|
scores_df["method"] = "gaussian_proc"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||||
rfr_score = cross_validate(
|
rfr_score = cross_validate(
|
||||||
rfr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
rfr,
|
||||||
|
X=data_x,
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Random Forest Regression")
|
print("Random Forest Regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(rfr_score)[test_metrics]
|
scores_df = pd.DataFrame(rfr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "random_forest"
|
scores_df["method"] = "random_forest"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
xgb = XGBRegressor()
|
xgb = XGBRegressor()
|
||||||
xgb_score = cross_validate(
|
xgb_score = cross_validate(
|
||||||
xgb, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
xgb,
|
||||||
|
X=data_x,
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("XGBoost Regressor")
|
print("XGBoost Regressor")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(xgb_score)[test_metrics]
|
scores_df = pd.DataFrame(xgb_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "XGBoost"
|
scores_df["method"] = "XGBoost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
ada = ensemble.AdaBoostRegressor()
|
ada = ensemble.AdaBoostRegressor()
|
||||||
ada_score = cross_validate(
|
ada_score = cross_validate(
|
||||||
ada, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
ada,
|
||||||
|
X=data_x,
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=logo,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("ADA Boost Regressor")
|
print("ADA Boost Regressor")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ada_score)[test_metrics]
|
scores_df = pd.DataFrame(ada_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "ADA_boost"
|
scores_df["method"] = "ADA_boost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -332,7 +324,7 @@ def run_all_regression_models(input_csv):
|
||||||
|
|
||||||
|
|
||||||
def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
metrics = ["accuracy", "average_precision", "recall", "f1"]
|
metrics = ['accuracy', 'average_precision', 'recall', 'f1']
|
||||||
test_metrics = ["test_" + metric for metric in metrics]
|
test_metrics = ["test_" + metric for metric in metrics]
|
||||||
|
|
||||||
scores = pd.DataFrame(columns=["method", "max", "mean"])
|
scores = pd.DataFrame(columns=["method", "max", "mean"])
|
||||||
|
@ -346,13 +338,13 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
error_score="raise",
|
error_score='raise',
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Dummy")
|
print("Dummy")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(dummy_score)[test_metrics]
|
scores_df = pd.DataFrame(dummy_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "Dummy"
|
scores_df["method"] = "Dummy"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -365,12 +357,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Logistic regression")
|
print("Logistic regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(log_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(log_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "logistic_reg"
|
scores_df["method"] = "logistic_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -383,12 +375,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Support Vector Machine")
|
print("Support Vector Machine")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(svc_scores)[test_metrics]
|
scores_df = pd.DataFrame(svc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "svc"
|
scores_df["method"] = "svc"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -401,12 +393,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Gaussian Naive Bayes")
|
print("Gaussian Naive Bayes")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(gaussian_nb_scores)[test_metrics]
|
scores_df = pd.DataFrame(gaussian_nb_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "gaussian_naive_bayes"
|
scores_df["method"] = "gaussian_naive_bayes"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -419,12 +411,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Stochastic Gradient Descent")
|
print("Stochastic Gradient Descent")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(sgdc_scores)[test_metrics]
|
scores_df = pd.DataFrame(sgdc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "stochastic_gradient_descent"
|
scores_df["method"] = "stochastic_gradient_descent"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -437,12 +429,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("Random Forest")
|
print("Random Forest")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(rfc_scores)[test_metrics]
|
scores_df = pd.DataFrame(rfc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "random_forest"
|
scores_df["method"] = "random_forest"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -455,12 +447,12 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics,
|
scoring=metrics
|
||||||
)
|
)
|
||||||
print("XGBoost")
|
print("XGBoost")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(xgb_scores)[test_metrics]
|
scores_df = pd.DataFrame(xgb_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||||
scores_df["method"] = "xgboost"
|
scores_df["method"] = "xgboost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
|
|
@ -34,114 +34,18 @@ df_app_categories <- tbl(con, "app_categories") %>%
|
||||||
head(df_app_categories)
|
head(df_app_categories)
|
||||||
table(df_app_categories$play_store_genre)
|
table(df_app_categories$play_store_genre)
|
||||||
|
|
||||||
df_app_categories %>%
|
|
||||||
filter(play_store_genre == "not_found") %>%
|
|
||||||
group_by(play_store_response) %>%
|
|
||||||
count()
|
|
||||||
# All "not_found" have an HTTP status of 404.
|
|
||||||
|
|
||||||
df_app_categories %>%
|
|
||||||
filter(play_store_genre == "not_found") %>%
|
|
||||||
group_by(package_name) %>%
|
|
||||||
count() %>%
|
|
||||||
arrange(desc(n))
|
|
||||||
# All "not_found" apps are unique.
|
|
||||||
|
|
||||||
# Exclude phone manufacturers, custom ROM names and similar.
|
|
||||||
manufacturers <- c(
|
|
||||||
"samsung",
|
|
||||||
"oneplus",
|
|
||||||
"huawei",
|
|
||||||
"xiaomi",
|
|
||||||
"lge",
|
|
||||||
"motorola",
|
|
||||||
"miui",
|
|
||||||
"lenovo",
|
|
||||||
"oppo",
|
|
||||||
"mediatek"
|
|
||||||
)
|
|
||||||
custom_rom <- c("coloros", "lineageos", "myos", "cyanogenmod", "foundation.e")
|
|
||||||
other <- c("android", "wssyncmldm")
|
|
||||||
|
|
||||||
grep_pattern <- paste(c(manufacturers, custom_rom, other), collapse = "|")
|
|
||||||
|
|
||||||
rows_os_manufacturer <- grepl(grep_pattern, df_app_categories$package_name)
|
|
||||||
|
|
||||||
# Explore what remains after excluding above.
|
|
||||||
df_app_categories[!rows_os_manufacturer, ] %>%
|
|
||||||
filter(play_store_genre == "not_found")
|
|
||||||
|
|
||||||
# Also check the relationship between is_system_app and System category.
|
|
||||||
tbl(con, "applications") %>%
|
|
||||||
filter(is_system_app, play_store_genre != "System") %>%
|
|
||||||
count()
|
|
||||||
# They are perfectly correlated.
|
|
||||||
|
|
||||||
# Manually classify apps
|
|
||||||
df_app_categories[df_app_categories$play_store_genre == "not_found",] <-
|
|
||||||
df_app_categories %>%
|
|
||||||
filter(play_store_genre == "not_found") %>%
|
|
||||||
mutate(
|
|
||||||
play_store_genre =
|
|
||||||
case_when(
|
|
||||||
str_detect(str_to_lower(package_name), grep_pattern) ~ "System",
|
|
||||||
str_detect(str_to_lower(package_name), "straw") ~ "STRAW",
|
|
||||||
str_detect(str_to_lower(package_name), "chromium") ~ "Communication", # Same as chrome.
|
|
||||||
str_detect(str_to_lower(package_name), "skype") ~ "Communication", # Skype Lite not classified.
|
|
||||||
str_detect(str_to_lower(package_name), "imsservice") ~ "Communication", # IP Multimedia Subsystem
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("covid", "empatica"), collapse = "|")) ~ "Medical",
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("libri", "tachiyomi"), collapse = "|")) ~ "Books & Reference",
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("bricks", "chess"), collapse = "|")) ~ "Casual",
|
|
||||||
str_detect(str_to_lower(package_name), "weather") ~ "Weather",
|
|
||||||
str_detect(str_to_lower(package_name), "excel") ~ "Productivity",
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("qr", "barcode", "archimedes", "mixplorer", "winrar", "filemanager", "shot", "faceunlock", "signin", "milink"), collapse = "|")) ~ "Tools",
|
|
||||||
str_detect(str_to_lower(package_name), "stupeflix") ~ "Photography",
|
|
||||||
str_detect(str_to_lower(package_name), "anyme") ~ "Entertainment",
|
|
||||||
str_detect(str_to_lower(package_name), "vanced") ~ "Video Players & Editors",
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("music", "radio", "dolby"), collapse = "|")) ~ "Music & Audio",
|
|
||||||
str_detect(str_to_lower(package_name), paste(c("tensorflow", "object_detection"), collapse = "|")) ~ "Education",
|
|
||||||
.default = play_store_genre
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Explore what remains after classifying above.
|
|
||||||
df_app_categories %>%
|
|
||||||
filter(play_store_genre == "not_found")
|
|
||||||
|
|
||||||
# After this, 13 applications remain, which I will classify as "Other".
|
|
||||||
|
|
||||||
# Correct some mistakes
|
# Correct some mistakes
|
||||||
# And classify 'not_found'
|
df_app_categories %<>% mutate(
|
||||||
df_app_categories %<>%
|
|
||||||
mutate(
|
|
||||||
play_store_genre = {
|
play_store_genre = {
|
||||||
function(x) {
|
function(x) {
|
||||||
case_when(
|
case_when(
|
||||||
x == "Education,Education" ~ "Education",
|
x == "Education,Education" ~ "Education",
|
||||||
x == "EducationEducation" ~ "Education",
|
x == "EducationEducation" ~ "Education",
|
||||||
x == "not_found" ~ "Other",
|
x == "not_found" ~ "System",
|
||||||
.default = x
|
.default = x
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
}(play_store_genre)
|
}(play_store_genre)
|
||||||
) %>%
|
|
||||||
select(-package_name) %>%
|
|
||||||
rename(
|
|
||||||
genre = play_store_genre,
|
|
||||||
package_name = package_hash
|
|
||||||
)
|
|
||||||
|
|
||||||
table(df_app_categories$genre)
|
|
||||||
|
|
||||||
df_app_categories %>%
|
|
||||||
group_by(genre) %>%
|
|
||||||
count() %>%
|
|
||||||
arrange(desc(n)) %>%
|
|
||||||
write_csv("play_store_categories_count.csv")
|
|
||||||
|
|
||||||
write_csv(
|
|
||||||
x = select(df_app_categories, c(package_name, genre)),
|
|
||||||
file = "play_store_application_genre_catalogue.csv"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
dbDisconnect(con)
|
dbDisconnect(con)
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,45 +0,0 @@
|
||||||
genre,n
|
|
||||||
System,261
|
|
||||||
Tools,96
|
|
||||||
Productivity,71
|
|
||||||
Health & Fitness,60
|
|
||||||
Finance,54
|
|
||||||
Communication,39
|
|
||||||
Music & Audio,39
|
|
||||||
Shopping,38
|
|
||||||
Lifestyle,33
|
|
||||||
Education,28
|
|
||||||
News & Magazines,24
|
|
||||||
Maps & Navigation,23
|
|
||||||
Entertainment,21
|
|
||||||
Business,18
|
|
||||||
Travel & Local,18
|
|
||||||
Books & Reference,16
|
|
||||||
Social,16
|
|
||||||
Weather,16
|
|
||||||
Food & Drink,14
|
|
||||||
Sports,14
|
|
||||||
Other,13
|
|
||||||
Photography,13
|
|
||||||
Puzzle,13
|
|
||||||
Video Players & Editors,12
|
|
||||||
Card,9
|
|
||||||
Casual,9
|
|
||||||
Personalization,8
|
|
||||||
Medical,7
|
|
||||||
Board,5
|
|
||||||
Strategy,4
|
|
||||||
House & Home,3
|
|
||||||
Trivia,3
|
|
||||||
Word,3
|
|
||||||
Adventure,2
|
|
||||||
Art & Design,2
|
|
||||||
Auto & Vehicles,2
|
|
||||||
Dating,2
|
|
||||||
Role Playing,2
|
|
||||||
STRAW,2
|
|
||||||
Simulation,2
|
|
||||||
"Board,Brain Games",1
|
|
||||||
"Entertainment,Music & Video",1
|
|
||||||
Parenting,1
|
|
||||||
Racing,1
|
|
|
2
rapids
2
rapids
|
@ -1 +1 @@
|
||||||
Subproject commit 63f5a526fce4d288499168e1701adadb8b885d82
|
Subproject commit 03687a1ac204f0a4347eb758dada8005f68b0bb1
|
Loading…
Reference in New Issue