Compare commits
No commits in common. "8b8d626cf0091d42856604ec90a37a24638f585e" and "6295cc8e9140ffdf4c7bc80669cd12350df75b48" have entirely different histories.
8b8d626cf0
...
6295cc8e91
|
@ -7,5 +7,3 @@ __pycache__/
|
||||||
/statistical_analysis/*.ipynb
|
/statistical_analysis/*.ipynb
|
||||||
/machine_learning/intermediate_results/
|
/machine_learning/intermediate_results/
|
||||||
/data/features/
|
/data/features/
|
||||||
/data/baseline/
|
|
||||||
/data/*input*.csv
|
|
||||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -1,272 +0,0 @@
|
||||||
# ---
|
|
||||||
# jupyter:
|
|
||||||
# jupytext:
|
|
||||||
# formats: ipynb,py:percent
|
|
||||||
# text_representation:
|
|
||||||
# extension: .py
|
|
||||||
# format_name: percent
|
|
||||||
# format_version: '1.3'
|
|
||||||
# jupytext_version: 1.13.0
|
|
||||||
# kernelspec:
|
|
||||||
# display_name: straw2analysis
|
|
||||||
# language: python
|
|
||||||
# name: straw2analysis
|
|
||||||
# ---
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# %matplotlib inline
|
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
|
||||||
import machine_learning.labels
|
|
||||||
import machine_learning.model
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# model_input = pd.read_csv("../data/input_PANAS_NA.csv") # Nestandardizirani podatki
|
|
||||||
model_input = pd.read_csv("../data/z_input_PANAS_NA.csv") # Standardizirani podatki
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs before dropping cols and rows
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
nan_cols = list(model_input.loc[:, model_input.isna().all()].columns)
|
|
||||||
nan_cols
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
model_input.dropna(axis=1, how="all", inplace=True)
|
|
||||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs after dropping NaN cols and rows where target is NaN
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sum(data_y.isna())
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Linear Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_val_score(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring='r2'
|
|
||||||
)
|
|
||||||
lin_reg_scores
|
|
||||||
np.median(lin_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
|
||||||
ridge_reg_scores = cross_val_score(
|
|
||||||
ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(ridge_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Lasso
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg_score = cross_val_score(
|
|
||||||
lasso_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(lasso_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Bayesian Ridge
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg_score = cross_val_score(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(bayesian_ridge_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### RANSAC (outlier robust regression)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
ransac_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Support vector regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr = svm.SVR()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
svr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Kernel Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
kridge,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Gaussian Process Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
gpr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %%
|
|
File diff suppressed because it is too large
Load Diff
|
@ -7,7 +7,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.13.0
|
# jupytext_version: 1.11.2
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -17,7 +17,6 @@
|
||||||
# %%
|
# %%
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import datetime
|
|
||||||
|
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
|
|
||||||
|
@ -27,7 +26,6 @@ if nb_dir not in sys.path:
|
||||||
import participants.query_db
|
import participants.query_db
|
||||||
from features.esm import *
|
from features.esm import *
|
||||||
from features.esm_JCQ import *
|
from features.esm_JCQ import *
|
||||||
from features.esm_SAM import *
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
participants_inactive_usernames = participants.query_db.get_usernames(
|
participants_inactive_usernames = participants.query_db.get_usernames(
|
||||||
|
@ -101,12 +99,6 @@ df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1]
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# # Stress appraisal measure
|
# # Stress appraisal measure
|
||||||
|
|
||||||
# %%
|
|
||||||
df_SAM_all = extract_stressful_events(df_esm_inactive)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
df_SAM_all.head()
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_esm_SAM = df_esm_preprocessed[
|
df_esm_SAM = df_esm_preprocessed[
|
||||||
(df_esm_preprocessed["questionnaire_id"] >= 87)
|
(df_esm_preprocessed["questionnaire_id"] >= 87)
|
||||||
|
|
2
rapids
2
rapids
|
@ -1 +1 @@
|
||||||
Subproject commit f78aa3e7b3567423b44045766b230cd60d557cb0
|
Subproject commit bf9c764c97f076f4af288f7afa1a32931996b2db
|
|
@ -6,7 +6,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.13.0
|
# jupytext_version: 1.12.0
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -14,7 +14,25 @@
|
||||||
# ---
|
# ---
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
SAVE_FIGS = False
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
import statsmodels.api as sm
|
||||||
|
import statsmodels.formula.api as smf
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
import participants.query_db
|
||||||
|
from features.esm import *
|
||||||
|
|
||||||
|
# %%
|
||||||
|
SAVE_FIGS = True
|
||||||
FIG_HEIGHT = 5
|
FIG_HEIGHT = 5
|
||||||
FIG_ASPECT = 1.7
|
FIG_ASPECT = 1.7
|
||||||
FIG_COLOUR = "#28827C"
|
FIG_COLOUR = "#28827C"
|
||||||
|
|
Loading…
Reference in New Issue