Compare commits

..

No commits in common. "777e6f0a583df6503fbf62a03813f9241f4c567f" and "577a874288e84f5b57c4ae79b89712c67b1285ef" have entirely different histories.

9 changed files with 106 additions and 365 deletions

View File

@ -1,63 +0,0 @@
id,timestamp,device_id,_id,double_proximity,accuracy,label,dateTime
39017,1565802024310,f67354f7-d675-4b76-80c8-123cc4744a5b,2962,0,3,,2019-08-14T17:00:24Z
39018,1565802051075,f67354f7-d675-4b76-80c8-123cc4744a5b,2963,0,3,,2019-08-14T17:00:51Z
39019,1565802051354,f67354f7-d675-4b76-80c8-123cc4744a5b,2964,8,3,,2019-08-14T17:00:51Z
39089,1565010418305,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,51,5,3,,2019-08-05T13:06:58Z
39090,1565010772188,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,52,5,3,,2019-08-05T13:12:52Z
39091,1565012334450,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,53,5,3,,2019-08-05T13:38:54Z
39092,1565013000660,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,54,5,3,,2019-08-05T13:50:00Z
39093,1565022742894,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,55,0,3,,2019-08-05T16:32:22Z
39094,1565089295906,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,56,5,3,,2019-08-06T11:01:35Z
39095,1565096030817,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,57,0,3,,2019-08-06T12:53:50Z
39096,1565096367694,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,58,5,3,,2019-08-06T12:59:27Z
39097,1565096408570,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,59,5,3,,2019-08-06T13:00:08Z
39098,1565116821528,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,60,5,3,,2019-08-06T18:40:21Z
39099,1565131345333,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,61,0,3,,2019-08-06T22:42:25Z
39100,1565131375072,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,62,5,3,,2019-08-06T22:42:55Z
39101,1565131386353,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,63,0,3,,2019-08-06T22:43:06Z
39102,1565131389213,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,64,5,3,,2019-08-06T22:43:09Z
39103,1565131448891,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,65,0,3,,2019-08-06T22:44:08Z
39104,1565131454131,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,66,5,3,,2019-08-06T22:44:14Z
39105,1565176143083,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,67,0,3,,2019-08-07T11:09:03Z
39106,1565179569310,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,68,5,3,,2019-08-07T12:06:09Z
39107,1565180699173,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,69,5,3,,2019-08-07T12:24:59Z
39108,1565182538578,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,70,5,3,,2019-08-07T12:55:38Z
39109,1565192592776,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,71,0,3,,2019-08-07T15:43:12Z
39110,1565216023797,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,72,5,3,,2019-08-07T22:13:43Z
39111,1565248358647,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,73,0,3,,2019-08-08T07:12:38Z
39112,1565275859157,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,74,5,3,,2019-08-08T14:50:59Z
39113,1565304201431,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,75,0,3,,2019-08-08T22:43:21Z
39114,1565304229591,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,76,5,3,,2019-08-08T22:43:49Z
39115,1565304262050,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,77,0,3,,2019-08-08T22:44:22Z
39116,1565613142970,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,78,5,3,,2019-08-12T12:32:22Z
39117,1565618266531,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,79,5,3,,2019-08-12T13:57:46Z
39118,1565618410488,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,80,5,3,,2019-08-12T14:00:10Z
39119,1565618704942,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,81,5,3,,2019-08-12T14:05:04Z
39120,1565619005315,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,82,5,3,,2019-08-12T14:10:05Z
39121,1565619405904,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,83,5,3,,2019-08-12T14:16:45Z
39122,1565619678037,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,84,5,3,,2019-08-12T14:21:18Z
39123,1565621206713,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,85,5,3,,2019-08-12T14:46:46Z
39124,1565626622125,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,86,5,3,,2019-08-12T16:17:02Z
39125,1565684876738,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,87,5,3,,2019-08-13T08:27:56Z
39126,1565684956618,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,88,5,3,,2019-08-13T08:29:16Z
39127,1565684965647,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,89,5,3,,2019-08-13T08:29:25Z
39128,1565685092246,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,90,5,3,,2019-08-13T08:31:32Z
39129,1565685136337,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,91,5,3,,2019-08-13T08:32:16Z
39130,1565685147453,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,92,5,3,,2019-08-13T08:32:27Z
39131,1565685212523,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,93,5,3,,2019-08-13T08:33:32Z
39132,1565703397796,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,94,0,3,,2019-08-13T13:36:37Z
39133,1565776203019,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,95,5,3,,2019-08-14T09:50:03Z
39134,1565776434168,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,96,5,3,,2019-08-14T09:53:54Z
39135,1565776435231,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,97,0,3,,2019-08-14T09:53:55Z
39136,1565776443368,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,98,5,3,,2019-08-14T09:54:03Z
39137,1565779277109,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,99,0,3,,2019-08-14T10:41:17Z
39138,1565780016327,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,100,5,3,,2019-08-14T10:53:36Z
39139,1565780027437,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,101,5,3,,2019-08-14T10:53:47Z
39140,1565783470934,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,102,5,3,,2019-08-14T11:51:10Z
39141,1565783801540,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,103,0,3,,2019-08-14T11:56:41Z
39142,1565783802120,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,104,5,3,,2019-08-14T11:56:42Z
39143,1565783861495,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,105,5,3,,2019-08-14T11:57:41Z
39144,1565785318762,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,106,0,3,,2019-08-14T12:21:58Z
39145,1565785319346,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,107,5,3,,2019-08-14T12:21:59Z
39146,1565960121019,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,108,5,3,,2019-08-16T12:55:21Z
39147,1565960226792,fdb06d4a-ee6e-4336-9a96-fc8d2715f243,109,5,3,,2019-08-16T12:57:06Z
1 id timestamp device_id _id double_proximity accuracy label dateTime
2 39017 1565802024310 f67354f7-d675-4b76-80c8-123cc4744a5b 2962 0 3 2019-08-14T17:00:24Z
3 39018 1565802051075 f67354f7-d675-4b76-80c8-123cc4744a5b 2963 0 3 2019-08-14T17:00:51Z
4 39019 1565802051354 f67354f7-d675-4b76-80c8-123cc4744a5b 2964 8 3 2019-08-14T17:00:51Z
5 39089 1565010418305 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 51 5 3 2019-08-05T13:06:58Z
6 39090 1565010772188 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 52 5 3 2019-08-05T13:12:52Z
7 39091 1565012334450 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 53 5 3 2019-08-05T13:38:54Z
8 39092 1565013000660 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 54 5 3 2019-08-05T13:50:00Z
9 39093 1565022742894 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 55 0 3 2019-08-05T16:32:22Z
10 39094 1565089295906 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 56 5 3 2019-08-06T11:01:35Z
11 39095 1565096030817 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 57 0 3 2019-08-06T12:53:50Z
12 39096 1565096367694 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 58 5 3 2019-08-06T12:59:27Z
13 39097 1565096408570 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 59 5 3 2019-08-06T13:00:08Z
14 39098 1565116821528 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 60 5 3 2019-08-06T18:40:21Z
15 39099 1565131345333 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 61 0 3 2019-08-06T22:42:25Z
16 39100 1565131375072 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 62 5 3 2019-08-06T22:42:55Z
17 39101 1565131386353 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 63 0 3 2019-08-06T22:43:06Z
18 39102 1565131389213 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 64 5 3 2019-08-06T22:43:09Z
19 39103 1565131448891 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 65 0 3 2019-08-06T22:44:08Z
20 39104 1565131454131 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 66 5 3 2019-08-06T22:44:14Z
21 39105 1565176143083 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 67 0 3 2019-08-07T11:09:03Z
22 39106 1565179569310 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 68 5 3 2019-08-07T12:06:09Z
23 39107 1565180699173 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 69 5 3 2019-08-07T12:24:59Z
24 39108 1565182538578 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 70 5 3 2019-08-07T12:55:38Z
25 39109 1565192592776 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 71 0 3 2019-08-07T15:43:12Z
26 39110 1565216023797 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 72 5 3 2019-08-07T22:13:43Z
27 39111 1565248358647 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 73 0 3 2019-08-08T07:12:38Z
28 39112 1565275859157 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 74 5 3 2019-08-08T14:50:59Z
29 39113 1565304201431 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 75 0 3 2019-08-08T22:43:21Z
30 39114 1565304229591 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 76 5 3 2019-08-08T22:43:49Z
31 39115 1565304262050 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 77 0 3 2019-08-08T22:44:22Z
32 39116 1565613142970 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 78 5 3 2019-08-12T12:32:22Z
33 39117 1565618266531 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 79 5 3 2019-08-12T13:57:46Z
34 39118 1565618410488 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 80 5 3 2019-08-12T14:00:10Z
35 39119 1565618704942 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 81 5 3 2019-08-12T14:05:04Z
36 39120 1565619005315 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 82 5 3 2019-08-12T14:10:05Z
37 39121 1565619405904 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 83 5 3 2019-08-12T14:16:45Z
38 39122 1565619678037 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 84 5 3 2019-08-12T14:21:18Z
39 39123 1565621206713 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 85 5 3 2019-08-12T14:46:46Z
40 39124 1565626622125 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 86 5 3 2019-08-12T16:17:02Z
41 39125 1565684876738 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 87 5 3 2019-08-13T08:27:56Z
42 39126 1565684956618 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 88 5 3 2019-08-13T08:29:16Z
43 39127 1565684965647 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 89 5 3 2019-08-13T08:29:25Z
44 39128 1565685092246 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 90 5 3 2019-08-13T08:31:32Z
45 39129 1565685136337 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 91 5 3 2019-08-13T08:32:16Z
46 39130 1565685147453 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 92 5 3 2019-08-13T08:32:27Z
47 39131 1565685212523 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 93 5 3 2019-08-13T08:33:32Z
48 39132 1565703397796 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 94 0 3 2019-08-13T13:36:37Z
49 39133 1565776203019 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 95 5 3 2019-08-14T09:50:03Z
50 39134 1565776434168 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 96 5 3 2019-08-14T09:53:54Z
51 39135 1565776435231 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 97 0 3 2019-08-14T09:53:55Z
52 39136 1565776443368 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 98 5 3 2019-08-14T09:54:03Z
53 39137 1565779277109 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 99 0 3 2019-08-14T10:41:17Z
54 39138 1565780016327 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 100 5 3 2019-08-14T10:53:36Z
55 39139 1565780027437 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 101 5 3 2019-08-14T10:53:47Z
56 39140 1565783470934 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 102 5 3 2019-08-14T11:51:10Z
57 39141 1565783801540 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 103 0 3 2019-08-14T11:56:41Z
58 39142 1565783802120 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 104 5 3 2019-08-14T11:56:42Z
59 39143 1565783861495 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 105 5 3 2019-08-14T11:57:41Z
60 39144 1565785318762 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 106 0 3 2019-08-14T12:21:58Z
61 39145 1565785319346 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 107 5 3 2019-08-14T12:21:59Z
62 39146 1565960121019 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 108 5 3 2019-08-16T12:55:21Z
63 39147 1565960226792 fdb06d4a-ee6e-4336-9a96-fc8d2715f243 109 5 3 2019-08-16T12:57:06Z

View File

@ -148,28 +148,3 @@ lin_reg_proximity.score(
df_full_data_daily_means[["freq_prox_near", "prop_prox_near"]],
df_full_data_daily_means["PA"],
)
# %% [markdown]
# # Merging these into a pipeline
# %%
from machine_learning import pipeline
# %%
ml_pipeline = pipeline.MachineLearningPipeline(
labels_questionnaire="PANAS", data_types="proximity"
)
# %%
ml_pipeline.get_labels()
# %% tags=[]
ml_pipeline.get_sensor_data()
# %%
ml_pipeline.aggregate_daily()
# %%
ml_pipeline.df_full_data_daily_means
# %%

View File

@ -8,43 +8,6 @@ from setup import db_engine, session
call_types = {1: "incoming", 2: "outgoing", 3: "missed"}
sms_types = {1: "received", 2: "sent"}
FEATURES_CALLS = (
["no_calls_all"]
+ ["no_" + call_type for call_type in call_types.values()]
+ ["duration_total_" + call_types.get(1), "duration_total_" + call_types.get(2)]
+ ["duration_max_" + call_types.get(1), "duration_max_" + call_types.get(2)]
+ ["no_" + call_types.get(1) + "_ratio", "no_" + call_types.get(2) + "_ratio"]
+ ["no_contacts_calls"]
)
# FEATURES_CALLS =
# ["no_calls_all",
# "no_incoming", "no_outgoing", "no_missed",
# "duration_total_incoming", "duration_total_outgoing",
# "duration_max_incoming", "duration_max_outgoing",
# "no_incoming_ratio", "no_outgoing_ratio",
# "no_contacts"]
FEATURES_SMS = (
["no_sms_all"]
+ ["no_" + sms_type for sms_type in sms_types.values()]
+ ["no_" + sms_types.get(1) + "_ratio", "no_" + sms_types.get(2) + "_ratio"]
+ ["no_contacts_sms"]
)
# FEATURES_SMS =
# ["no_sms_all",
# "no_received", "no_sent",
# "no_received_ratio", "no_sent_ratio",
# "no_contacts"]
FEATURES_CONTACT = [
"proportion_calls_all",
"proportion_calls_incoming",
"proportion_calls_outgoing",
"proportion_calls_contacts",
"proportion_calls_missed_sms_received",
]
def get_call_data(usernames: Collection) -> pd.DataFrame:
"""
@ -151,12 +114,10 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
These are:
* the number of calls by type (incoming, outgoing missed) and in total,
* the ratio of incoming and outgoing calls to the total number of calls,
* the total and maximum duration of calls by type,
* the number of messages by type (received, sent), and
* the number of communication contacts by type.
* the total and maximum duration of calls by type, and
* the number of messages by type (received, sent).
"""
if "call_type" in comm_df:
data_type = "calls"
comm_counts = (
comm_df.value_counts(subset=["participant_id", "call_type"])
.unstack()
@ -164,11 +125,11 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
.add_prefix("no_")
)
# Count calls by type.
comm_counts["no_calls_all"] = comm_counts.sum(axis=1)
comm_counts["no_all"] = comm_counts.sum(axis=1)
# Add a total count of calls.
comm_counts = comm_counts.assign(
no_incoming_ratio=lambda x: x.no_incoming / x.no_calls_all,
no_outgoing_ratio=lambda x: x.no_outgoing / x.no_calls_all,
no_incoming_ratio=lambda x: x.no_incoming / x.no_all,
no_outgoing_ratio=lambda x: x.no_outgoing / x.no_all,
)
# Ratio of incoming and outgoing calls to all calls.
comm_duration_total = (
@ -198,56 +159,44 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
# If there were no missed calls, this exception is raised.
# But we are dropping the column anyway, so no need to deal with the exception.
elif "message_type" in comm_df:
data_type = "sms"
comm_counts = (
comm_df.value_counts(subset=["participant_id", "message_type"])
.unstack()
.rename(columns=sms_types)
.add_prefix("no_")
)
comm_counts["no_sms_all"] = comm_counts.sum(axis=1)
comm_counts["no_all"] = comm_counts.sum(axis=1)
# Add a total count of messages.
comm_features = comm_counts.assign(
no_received_ratio=lambda x: x.no_received / x.no_sms_all,
no_sent_ratio=lambda x: x.no_sent / x.no_sms_all,
no_received_ratio=lambda x: x.no_received / x.no_all,
no_sent_ratio=lambda x: x.no_sent / x.no_all,
)
# Ratio of incoming and outgoing messages to all messages.
else:
raise KeyError("The dataframe contains neither call_type or message_type")
comm_contacts_counts = (
enumerate_contacts(comm_df)
.groupby(["participant_id"])
.nunique()["contact_id"]
.rename("no_contacts_" + data_type)
)
# Number of communication contacts
comm_features = comm_features.join(comm_contacts_counts)
return comm_features
def contact_features(comm_df: pd.DataFrame) -> pd.DataFrame:
def contact_features(df_enumerated: pd.DataFrame) -> pd.DataFrame:
"""
For each participant and for each of his contacts, this function
counts the number of communications (by type) between them. If the
argument passed is a dataframe with calls data, it additionally counts
the total duration of calls between every pair (participant, contact).
Counts the number of people contacted (for each participant) and, if
df_enumerated is a dataframe containing calls data, the total duration
of calls between a participant and each of her contacts.
Parameters
----------
comm_df: pd.DataFrame
A dataframe of calls or SMSes.
df_enumerated: pd.DataFrame
A dataframe of calls or SMSes; return of function enumerate_contacts.
Returns
-------
comm_df: pd.DataFrame
A new dataframe with a row for each pair (participant, contact).
The altered dataframe with the column no_contacts and, if df_enumerated
contains calls data, an additional column total_call_duration.
"""
df_enumerated = enumerate_contacts(comm_df)
contacts_count = (
df_enumerated.groupby(["participant_id", "contact_id"]).size().reset_index()
)
# Check whether df contains calls or SMS data since some
# features we want to calculate are type-specific
# features we want to calculate are type-specyfic
if "call_duration" in df_enumerated:
# Add a column with the total duration of calls between two people
duration_count = (
@ -258,14 +207,33 @@ def contact_features(comm_df: pd.DataFrame) -> pd.DataFrame:
.reset_index() # Make index (which is actually the participant id) a normal column
.rename(columns={"call_duration": "total_call_duration"})
)
contacts_count = contacts_count.merge(
# The new dataframe now contains columns containing information about
# participants, callers and the total duration of their calls. All that
# is now left to do is to merge the original df with the new one.
df_enumerated = df_enumerated.merge(
duration_count, on=["participant_id", "contact_id"]
)
contacts_count.rename(columns={0: "no_calls"}, inplace=True)
else:
contacts_count.rename(columns={0: "no_sms"}, inplace=True)
contact_count = (
df_enumerated.groupby(["participant_id"])
.nunique()[
"contact_id"
] # For each participant, count the number of distinct contacts
.reset_index() # Make index (which is actually the participant id) a normal column
.rename(columns={"contact_id": "no_contacts"})
)
df_enumerated = (
# Merge df with the newely created df containing info about number of contacts
df_enumerated.merge(contact_count, on="participant_id")
# Sort first by participant_id and then by contact_id and
# thereby restore the inital ordering of input dataframes.
.sort_values(["participant_id", "contact_id"])
)
# TODO:Determine work vs non-work contacts by work hours heuristics
return contacts_count
return df_enumerated
def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataFrame:
@ -277,14 +245,14 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
df_calls: pd.DataFrame
A dataframe of calls (return of get_call_data).
df_sms: pd.DataFrame
A dataframe of SMSes (return of get_sms_data).
A dataframe of calls (return of get_sms_data).
Returns
-------
df_calls_sms: pd.DataFrame
The list of features relating calls and sms data for every participant.
These are:
* proportion_calls_all:
* proportion_calls:
proportion of calls in total number of communications
* proportion_calls_incoming:
proportion of incoming calls in total number of incoming/received communications
@ -295,24 +263,62 @@ def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataF
* proportion_calls_contacts:
proportion of calls contacts in total number of communication contacts
"""
count_calls = count_comms(df_calls)
count_sms = count_comms(df_sms)
count_joined = count_calls.join(count_sms).assign(
proportion_calls_all=(
lambda x: x.no_calls_all / (x.no_calls_all + x.no_sms_all)
),
proportion_calls_incoming=(
lambda x: x.no_incoming / (x.no_incoming + x.no_received)
),
proportion_calls_missed_sms_received=(
lambda x: x.no_missed / (x.no_missed + x.no_received)
),
proportion_calls_outgoing=(
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
),
proportion_calls_contacts=(
lambda x: x.no_contacts_calls / (x.no_contacts_calls + x.no_contacts_sms)
)
# Calculate new features and create additional columns
count_joined = (
count_calls.merge(
count_sms, on="participant_id", suffixes=("_calls", "_sms")
) # Merge calls and sms features
.reset_index() # Make participant_id a regular column
.assign(
proportion_calls=(
lambda x: x.no_all_calls / (x.no_all_calls + x.no_all_sms)
),
proportion_calls_incoming=(
lambda x: x.no_incoming / (x.no_incoming + x.no_received)
),
proportion_calls_missed_sms_received=(
lambda x: x.no_missed / (x.no_missed + x.no_received)
),
proportion_calls_outgoing=(
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
)
# Calculate new features and create additional columns
)[
[
"participant_id",
"proportion_calls",
"proportion_calls_incoming",
"proportion_calls_outgoing",
"proportion_calls_missed_sms_received",
]
] # Filter out only the relevant features
)
return count_joined
features_calls = contact_features(enumerate_contacts(df_calls))
features_sms = contact_features(enumerate_contacts(df_sms))
features_joined = (
features_calls.merge(
features_sms, on="participant_id", suffixes=("_calls", "_sms")
) # Merge calls and sms features
.reset_index() # Make participant_id a regular column
.assign(
proportion_calls_contacts=(
lambda x: x.no_contacts_calls
/ (x.no_contacts_calls + x.no_contacts_sms)
) # Calculate new features and create additional columns
)[
["participant_id", "proportion_calls_contacts"]
] # Filter out only the relevant features
# Since we are interested only in some features and ignored
# others, a lot of duplicate rows were created. Remove them.
.drop_duplicates()
)
# Join the newly created dataframes
df_calls_sms = count_joined.merge(features_joined, on="participant_id")
return df_calls_sms

View File

@ -5,8 +5,6 @@ import pandas as pd
from config.models import Participant, Proximity
from setup import db_engine, session
FEATURES_PROXIMITY = ["freq_prox_near", "prop_prox_near"]
def get_proximity_data(usernames: Collection) -> pd.DataFrame:
"""
@ -58,7 +56,7 @@ def recode_proximity(df_proximity: pd.DataFrame) -> pd.DataFrame:
def count_proximity(
df_proximity: pd.DataFrame, group_by: Collection = None
df_proximity: pd.DataFrame, group_by: Collection = ["participant_id"]
) -> pd.DataFrame:
"""
The function counts how many times a "near" value occurs in proximity
@ -77,8 +75,6 @@ def count_proximity(
df_proximity_features: pd.DataFrame
A dataframe with the count of "near" proximity values and their relative count.
"""
if group_by is None:
group_by = ["participant_id"]
if "bool_prox_near" not in df_proximity:
df_proximity = recode_proximity(df_proximity)
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]

View File

@ -38,10 +38,8 @@ def identify_screen_sequence(df_screen: pd.DataFrame) -> pd.DataFrame:
# - OFF -> ON -> unlocked (a true phone unlock)
# - OFF -> ON -> OFF/locked (no unlocking, i.e. a screen status check)
# Consider that screen data is sometimes unreliable as shown in expl_screen.ipynb:
# "I have also seen
# off -> on -> unlocked (with 2 - locked missing)
# and
# off -> locked -> on -> off -> locked (*again*)."
# "I have also seen off -> on -> unlocked (with 2 - locked missing)
# and off -> locked -> on -> off -> locked (*again*)."
# Either clean the data beforehand or deal with these inconsistencies in this function.
pass

View File

@ -1,7 +0,0 @@
QUESTIONNAIRE_IDS = {"PANAS": {"PA": 8.0, "NA": 9.0}}
QUESTIONNAIRE_IDS_RENAME = {}
for questionnaire in QUESTIONNAIRE_IDS.items():
for k, v in questionnaire[1].items():
QUESTIONNAIRE_IDS_RENAME[v] = k

View File

@ -1,125 +0,0 @@
import datetime
import pandas as pd
from sklearn.model_selection import cross_val_score
import participants.query_db
from features import esm, helper, proximity
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
class MachineLearningPipeline:
def __init__(
self,
labels_questionnaire,
labels_scale,
data_types,
participants_usernames=None,
feature_names=None,
grouping_variable=None,
):
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_usernames = participants_usernames
self.labels_questionnaire = labels_questionnaire
self.data_types = data_types
if feature_names is None:
self.feature_names = []
self.df_features = pd.DataFrame()
self.labels_scale = labels_scale
self.df_labels = pd.DataFrame()
self.grouping_variable = grouping_variable
self.df_groups = pd.DataFrame()
self.model = None
self.validation_method = None
self.df_esm = pd.DataFrame()
self.df_esm_preprocessed = pd.DataFrame()
self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame()
self.df_proximity = pd.DataFrame()
self.df_full_data_daily_means = pd.DataFrame()
self.df_esm_daily_means = pd.DataFrame()
self.df_proximity_daily_counts = pd.DataFrame()
def get_labels(self):
self.df_esm = esm.get_esm_data(self.participants_usernames)
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
if self.labels_questionnaire == "PANAS":
self.df_esm_interest = self.df_esm_preprocessed[
(
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
)
| (
self.df_esm_preprocessed["questionnaire_id"]
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
)
]
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
def get_sensor_data(self):
if "proximity" in self.data_types:
self.df_proximity = proximity.get_proximity_data(
self.participants_usernames
)
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
self.df_proximity = proximity.recode_proximity(self.df_proximity)
def aggregate_daily(self):
self.df_esm_daily_means = (
self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
.esm_user_answer_numeric.agg("mean")
.reset_index()
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
)
self.df_esm_daily_means = (
self.df_esm_daily_means.pivot(
index=["participant_id", "date_lj"],
columns="questionnaire_id",
values="esm_numeric_mean",
)
.reset_index(col_level=1)
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
.set_index(["participant_id", "date_lj"])
)
self.df_full_data_daily_means = self.df_esm_daily_means.copy()
if "proximity" in self.data_types:
self.df_proximity_daily_counts = proximity.count_proximity(
self.df_proximity, ["participant_id", "date_lj"]
)
self.df_full_data_daily_means = self.df_full_data_daily_means.join(
self.df_proximity_daily_counts
)
def assign_columns(self):
self.df_features = self.df_full_data_daily_means[self.feature_names]
self.df_labels = self.df_full_data_daily_means[self.labels_scale]
if self.grouping_variable:
self.df_groups = self.df_full_data_daily_means[self.grouping_variable]
else:
self.df_groups = None
def validate_model(self):
if self.model is None:
raise AttributeError(
"Please, specify a machine learning model first, by setting the .model attribute."
)
if self.validation_method is None:
raise AttributeError(
"Please, specify a cross validation method first, by setting the .validation_method attribute."
)
cross_val_score(
estimator=self.model,
X=self.df_features,
y=self.df_labels,
groups=self.df_groups,
cv=self.validation_method,
n_jobs=-1,
)

View File

@ -5,7 +5,7 @@ import pandas as pd
from numpy.random import default_rng
from pandas.testing import assert_series_equal
from features.communication import *
from features.communication import count_comms, enumerate_contacts, get_call_data
rng = default_rng()
@ -76,18 +76,10 @@ class CallsFeatures(unittest.TestCase):
def test_count_comms_calls(self):
self.features = count_comms(self.calls)
print(self.features)
self.assertIsInstance(self.features, pd.DataFrame)
self.assertCountEqual(self.features.columns.to_list(), FEATURES_CALLS)
def test_count_comms_sms(self):
self.features = count_comms(self.sms)
print(self.features)
self.assertIsInstance(self.features, pd.DataFrame)
self.assertCountEqual(self.features.columns.to_list(), FEATURES_SMS)
def test_calls_sms_features(self):
self.features_call_sms = calls_sms_features(self.calls, self.sms)
self.assertIsInstance(self.features_call_sms, pd.DataFrame)
self.assertCountEqual(
self.features_call_sms.columns.to_list(),
FEATURES_CALLS + FEATURES_SMS + FEATURES_CONTACT,
)

View File

@ -1,31 +0,0 @@
import unittest
from features.proximity import *
class ProximityFeatures(unittest.TestCase):
df_proximity = pd.DataFrame()
df_proximity_recoded = pd.DataFrame()
df_proximity_features = pd.DataFrame()
@classmethod
def setUpClass(cls) -> None:
cls.df_proximity = pd.read_csv("../data/example_proximity.csv")
cls.df_proximity["participant_id"] = 99
def test_recode_proximity(self):
self.df_proximity_recoded = recode_proximity(self.df_proximity)
self.assertIn("bool_prox_near", self.df_proximity_recoded)
# Is the recoded column present?
self.assertIn(True, self.df_proximity_recoded.bool_prox_near)
# Are there "near" values in the data?
self.assertIn(False, self.df_proximity_recoded.bool_prox_near)
# Are there "far" values in the data?
def test_count_proximity(self):
self.df_proximity_recoded = recode_proximity(self.df_proximity)
self.df_proximity_features = count_proximity(self.df_proximity_recoded)
print(self.df_proximity_features.columns)
self.assertCountEqual(
self.df_proximity_features.columns.to_list(), FEATURES_PROXIMITY
)