Compare commits
11 Commits
297eb45933
...
c66e046014
Author | SHA1 | Date |
---|---|---|
junos | c66e046014 | |
junos | 48118f125d | |
junos | 583ee82e80 | |
junos | 59552c18a9 | |
junos | a4ad4c3200 | |
junos | 7e565c34db | |
junos | d6eea0fc00 | |
junos | 711b451eff | |
junos | 0e66a5a963 | |
junos | c88cecc063 | |
junos | 66754a24aa |
|
@ -3,6 +3,5 @@
|
||||||
<component name="VcsDirectoryMappings">
|
<component name="VcsDirectoryMappings">
|
||||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||||
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
|
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
|
||||||
<mapping directory="$PROJECT_DIR$/rapids/calculatingfeatures" vcs="Git" />
|
|
||||||
</component>
|
</component>
|
||||||
</project>
|
</project>
|
|
@ -1,9 +1,8 @@
|
||||||
name: straw2analysis
|
name: straw2analysis
|
||||||
channels:
|
channels:
|
||||||
- defaults
|
|
||||||
- conda-forge
|
- conda-forge
|
||||||
dependencies:
|
dependencies:
|
||||||
- python=3.9
|
- python=3.11
|
||||||
- black
|
- black
|
||||||
- isort
|
- isort
|
||||||
- flake8
|
- flake8
|
||||||
|
@ -24,3 +23,4 @@ dependencies:
|
||||||
- sqlalchemy
|
- sqlalchemy
|
||||||
- statsmodels
|
- statsmodels
|
||||||
- tabulate
|
- tabulate
|
||||||
|
- xgboost
|
|
@ -15,91 +15,34 @@
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
# %matplotlib inline
|
# %matplotlib inline
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.dummy import DummyRegressor
|
|
||||||
import xgboost as xg
|
import xgboost as xg
|
||||||
from IPython.core.interactiveshell import InteractiveShell
|
from machine_learning.helper import prepare_regression_model_input
|
||||||
InteractiveShell.ast_node_interactivity = "all"
|
from sklearn import gaussian_process, kernel_ridge, linear_model, svm
|
||||||
|
from sklearn.dummy import DummyRegressor
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
|
||||||
|
# from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
# InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
if nb_dir not in sys.path:
|
if nb_dir not in sys.path:
|
||||||
sys.path.append(nb_dir)
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
# %% jupyter={"source_hidden": true}
|
||||||
import machine_learning.labels
|
model_input = pd.read_csv(
|
||||||
import machine_learning.model
|
"../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv"
|
||||||
|
)
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
cv_method = "half_logo" # logo, half_logo, 5kfold
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
|
||||||
if cv_method == 'logo':
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
else:
|
|
||||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
|
||||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
|
||||||
|
|
||||||
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
|
||||||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
|
||||||
categorical_feature_colnames += additional_categorical_features
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
|
train_x, data_y, data_groups = prepare_regression_model_input(model_input, cv_method)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
logo = LeaveOneGroupOut()
|
logo = LeaveOneGroupOut()
|
||||||
logo.get_n_splits(
|
logo.get_n_splits(
|
||||||
|
@ -109,7 +52,7 @@ logo.get_n_splits(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Defaults to 5 k folds in cross_validate method
|
# Defaults to 5 k folds in cross_validate method
|
||||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
if cv_method != "logo" and cv_method != "half_logo":
|
||||||
logo = None
|
logo = None
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
|
@ -120,7 +63,7 @@ sum(data_y.isna())
|
||||||
dummy_regr = DummyRegressor(strategy="mean")
|
dummy_regr = DummyRegressor(strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
dummy_regressor = cross_validate(
|
dummy_regressor = cross_validate(
|
||||||
|
@ -130,12 +73,26 @@ dummy_regressor = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
np.median(dummy_regressor["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(dummy_regressor['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(dummy_regressor["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(dummy_regressor["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(dummy_regressor["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Linear Regression
|
# ### Linear Regression
|
||||||
|
@ -143,7 +100,7 @@ print("R2", np.median(dummy_regressor['test_r2']))
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
lin_reg_rapids = linear_model.LinearRegression()
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_scores = cross_validate(
|
lin_reg_scores = cross_validate(
|
||||||
|
@ -153,19 +110,33 @@ lin_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(lin_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(lin_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(lin_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(lin_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Linear Regression
|
# ### XGBRegressor Linear Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
xgb_r = xg.XGBRegressor(objective="reg:squarederror", n_estimators=10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_reg_scores = cross_validate(
|
xgb_reg_scores = cross_validate(
|
||||||
|
@ -175,19 +146,33 @@ xgb_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(xgb_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(xgb_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(xgb_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(xgb_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(xgb_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### XGBRegressor Pseudo Huber Error Regression
|
# ### XGBRegressor Pseudo Huber Error Regression
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
xgb_psuedo_huber_r = xg.XGBRegressor(objective="reg:pseudohubererror", n_estimators=10)
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
|
@ -197,18 +182,32 @@ xgb_psuedo_huber_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(xgb_psuedo_huber_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(xgb_psuedo_huber_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Ridge regression
|
# ### Ridge regression
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
# %% tags=[] jupyter={"source_hidden": true}
|
||||||
ridge_reg_scores = cross_validate(
|
ridge_reg_scores = cross_validate(
|
||||||
|
@ -218,12 +217,26 @@ ridge_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(ridge_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(ridge_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(ridge_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(ridge_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(ridge_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Lasso
|
# ### Lasso
|
||||||
|
@ -239,12 +252,26 @@ lasso_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
np.median(lasso_reg_score["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(lasso_reg_score['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(lasso_reg_score["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(lasso_reg_score["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(lasso_reg_score["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Bayesian Ridge
|
# ### Bayesian Ridge
|
||||||
|
@ -260,12 +287,26 @@ bayesian_ridge_reg_score = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
np.median(bayesian_ridge_reg_score["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(bayesian_ridge_reg_score["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(bayesian_ridge_reg_score["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(bayesian_ridge_reg_score["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### RANSAC (outlier robust regression)
|
# ### RANSAC (outlier robust regression)
|
||||||
|
@ -281,12 +322,26 @@ ransac_reg_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
np.median(ransac_reg_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(ransac_reg_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(ransac_reg_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(ransac_reg_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(ransac_reg_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Support vector regression
|
# ### Support vector regression
|
||||||
|
@ -302,12 +357,25 @@ svr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error", np.median(svr_scores["test_neg_mean_squared_error"])
|
||||||
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
)
|
||||||
print("R2", np.median(svr_scores['test_r2']))
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(svr_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(svr_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(svr_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Kernel Ridge regression
|
# ### Kernel Ridge regression
|
||||||
|
@ -323,12 +391,26 @@ kridge_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error",
|
||||||
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
np.median(kridge_scores["test_neg_mean_squared_error"]),
|
||||||
print("R2", np.median(kridge_scores['test_r2']))
|
)
|
||||||
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(kridge_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(kridge_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(kridge_scores["test_r2"]))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Gaussian Process Regression
|
# ### Gaussian Process Regression
|
||||||
|
@ -345,11 +427,24 @@ gpr_scores = cross_validate(
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=(
|
||||||
|
"r2",
|
||||||
|
"neg_mean_squared_error",
|
||||||
|
"neg_mean_absolute_error",
|
||||||
|
"neg_root_mean_squared_error",
|
||||||
|
),
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
print(
|
||||||
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
"Negative Mean Squared Error", np.median(gpr_scores["test_neg_mean_squared_error"])
|
||||||
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
)
|
||||||
print("R2", np.median(gpr_scores['test_r2']))
|
print(
|
||||||
|
"Negative Mean Absolute Error",
|
||||||
|
np.median(gpr_scores["test_neg_mean_absolute_error"]),
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
"Negative Root Mean Squared Error",
|
||||||
|
np.median(gpr_scores["test_neg_root_mean_squared_error"]),
|
||||||
|
)
|
||||||
|
print("R2", np.median(gpr_scores["test_r2"]))
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
|
@ -1,15 +1,18 @@
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble, naive_bayes, neighbors, tree
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, cross_validate
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.dummy import DummyRegressor, DummyClassifier
|
|
||||||
|
|
||||||
from xgboost import XGBRegressor, XGBClassifier
|
|
||||||
import xgboost as xg
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn import (
|
||||||
|
ensemble,
|
||||||
|
gaussian_process,
|
||||||
|
kernel_ridge,
|
||||||
|
linear_model,
|
||||||
|
naive_bayes,
|
||||||
|
svm,
|
||||||
|
)
|
||||||
|
from sklearn.dummy import DummyClassifier, DummyRegressor
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
from xgboost import XGBClassifier, XGBRegressor
|
||||||
|
|
||||||
|
|
||||||
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
@ -65,28 +68,64 @@ def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> P
|
||||||
full_path = folder / export_filename
|
full_path = folder / export_filename
|
||||||
return full_path
|
return full_path
|
||||||
|
|
||||||
|
|
||||||
def insert_row(df, row):
|
def insert_row(df, row):
|
||||||
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
||||||
|
|
||||||
def prepare_regression_model_input(input_csv):
|
|
||||||
|
|
||||||
model_input = pd.read_csv(input_csv)
|
def prepare_regression_model_input(model_input, cv_method="logo"):
|
||||||
|
index_columns = [
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
"local_segment",
|
||||||
|
"local_segment_label",
|
||||||
|
"local_segment_start_datetime",
|
||||||
|
"local_segment_end_datetime",
|
||||||
|
]
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
if cv_method == "logo":
|
||||||
|
data_x, data_y, data_groups = (
|
||||||
|
model_input.drop(["target", "pid"], axis=1),
|
||||||
|
model_input["target"],
|
||||||
|
model_input["pid"],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
model_input["pid_index"] = model_input.groupby("pid").cumcount()
|
||||||
|
model_input["pid_count"] = model_input.groupby("pid")["pid"].transform("count")
|
||||||
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage", "limesurvey_demand_control_ratio_quartile"]
|
model_input["pid_index"] = (
|
||||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
model_input["pid_index"] / model_input["pid_count"] + 1
|
||||||
|
).round()
|
||||||
|
model_input["pid_half"] = (
|
||||||
|
model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||||
|
)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = (
|
||||||
|
model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1),
|
||||||
|
model_input["target"],
|
||||||
|
model_input["pid_half"],
|
||||||
|
)
|
||||||
|
|
||||||
|
categorical_feature_colnames = [
|
||||||
|
"gender",
|
||||||
|
"startlanguage",
|
||||||
|
"limesurvey_demand_control_ratio_quartile",
|
||||||
|
]
|
||||||
|
additional_categorical_features = [
|
||||||
|
col
|
||||||
|
for col in data_x.columns
|
||||||
|
if "mostcommonactivity" in col or "homelabel" in col
|
||||||
|
]
|
||||||
categorical_feature_colnames += additional_categorical_features
|
categorical_feature_colnames += additional_categorical_features
|
||||||
#TODO: check whether limesurvey_demand_control_ratio_quartile NaNs could be replaced meaningfully
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
# fillna with mode
|
# fillna with mode
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
# one-hot encoding
|
# one-hot encoding
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
categorical_features = categorical_features.apply(
|
||||||
|
lambda col: col.astype("category")
|
||||||
|
)
|
||||||
if not categorical_features.empty:
|
if not categorical_features.empty:
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
@ -108,7 +147,7 @@ def run_all_regression_models(input_csv):
|
||||||
data_y,
|
data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
)
|
)
|
||||||
metrics = ['r2', 'neg_mean_absolute_error', 'neg_root_mean_squared_error']
|
metrics = ["r2", "neg_mean_absolute_error", "neg_root_mean_squared_error"]
|
||||||
test_metrics = ["test_" + metric for metric in metrics]
|
test_metrics = ["test_" + metric for metric in metrics]
|
||||||
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
||||||
|
|
||||||
|
@ -121,13 +160,13 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Dummy model:")
|
print("Dummy model:")
|
||||||
print("R^2: ", np.nanmedian(dummy_regr_scores['test_r2']))
|
print("R^2: ", np.nanmedian(dummy_regr_scores["test_r2"]))
|
||||||
|
|
||||||
scores_df = pd.DataFrame(dummy_regr_scores)[test_metrics]
|
scores_df = pd.DataFrame(dummy_regr_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "dummy"
|
scores_df["method"] = "dummy"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -139,17 +178,17 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Linear regression:")
|
print("Linear regression:")
|
||||||
print("R^2: ", np.nanmedian(lin_reg_scores['test_r2']))
|
print("R^2: ", np.nanmedian(lin_reg_scores["test_r2"]))
|
||||||
|
|
||||||
scores_df = pd.DataFrame(lin_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(lin_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "linear_reg"
|
scores_df["method"] = "linear_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||||
ridge_reg_scores = cross_validate(
|
ridge_reg_scores = cross_validate(
|
||||||
ridge_reg,
|
ridge_reg,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
|
@ -157,16 +196,15 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Ridge regression")
|
print("Ridge regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ridge_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(ridge_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "ridge_reg"
|
scores_df["method"] = "ridge_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||||
lasso_reg_score = cross_validate(
|
lasso_reg_score = cross_validate(
|
||||||
lasso_reg,
|
lasso_reg,
|
||||||
|
@ -175,12 +213,12 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Lasso regression")
|
print("Lasso regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(lasso_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(lasso_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "lasso_reg"
|
scores_df["method"] = "lasso_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -192,12 +230,12 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Bayesian Ridge")
|
print("Bayesian Ridge")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(bayesian_ridge_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(bayesian_ridge_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "bayesian_ridge"
|
scores_df["method"] = "bayesian_ridge"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -209,29 +247,23 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("RANSAC (outlier robust regression)")
|
print("RANSAC (outlier robust regression)")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ransac_reg_score)[test_metrics]
|
scores_df = pd.DataFrame(ransac_reg_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "RANSAC"
|
scores_df["method"] = "RANSAC"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
svr = svm.SVR()
|
svr = svm.SVR()
|
||||||
svr_score = cross_validate(
|
svr_score = cross_validate(
|
||||||
svr,
|
svr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||||
X=data_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=metrics
|
|
||||||
)
|
)
|
||||||
print("Support vector regression")
|
print("Support vector regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(svr_score)[test_metrics]
|
scores_df = pd.DataFrame(svr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "SVR"
|
scores_df["method"] = "SVR"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -243,80 +275,56 @@ def run_all_regression_models(input_csv):
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Kernel Ridge regression")
|
print("Kernel Ridge regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(kridge_score)[test_metrics]
|
scores_df = pd.DataFrame(kridge_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "kernel_ridge"
|
scores_df["method"] = "kernel_ridge"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
gpr = gaussian_process.GaussianProcessRegressor()
|
||||||
gpr_score = cross_validate(
|
gpr_score = cross_validate(
|
||||||
gpr,
|
gpr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||||
X=data_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=metrics
|
|
||||||
)
|
)
|
||||||
print("Gaussian Process Regression")
|
print("Gaussian Process Regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(gpr_score)[test_metrics]
|
scores_df = pd.DataFrame(gpr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "gaussian_proc"
|
scores_df["method"] = "gaussian_proc"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||||
rfr_score = cross_validate(
|
rfr_score = cross_validate(
|
||||||
rfr,
|
rfr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||||
X=data_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=metrics
|
|
||||||
)
|
)
|
||||||
print("Random Forest Regression")
|
print("Random Forest Regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(rfr_score)[test_metrics]
|
scores_df = pd.DataFrame(rfr_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "random_forest"
|
scores_df["method"] = "random_forest"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
xgb = XGBRegressor()
|
xgb = XGBRegressor()
|
||||||
xgb_score = cross_validate(
|
xgb_score = cross_validate(
|
||||||
xgb,
|
xgb, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||||
X=data_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=metrics
|
|
||||||
)
|
)
|
||||||
print("XGBoost Regressor")
|
print("XGBoost Regressor")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(xgb_score)[test_metrics]
|
scores_df = pd.DataFrame(xgb_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "XGBoost"
|
scores_df["method"] = "XGBoost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
ada = ensemble.AdaBoostRegressor()
|
ada = ensemble.AdaBoostRegressor()
|
||||||
ada_score = cross_validate(
|
ada_score = cross_validate(
|
||||||
ada,
|
ada, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||||
X=data_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=metrics
|
|
||||||
)
|
)
|
||||||
print("ADA Boost Regressor")
|
print("ADA Boost Regressor")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(ada_score)[test_metrics]
|
scores_df = pd.DataFrame(ada_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||||
scores_df["method"] = "ADA_boost"
|
scores_df["method"] = "ADA_boost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
@ -324,7 +332,7 @@ def run_all_regression_models(input_csv):
|
||||||
|
|
||||||
|
|
||||||
def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
metrics = ['accuracy', 'average_precision', 'recall', 'f1']
|
metrics = ["accuracy", "average_precision", "recall", "f1"]
|
||||||
test_metrics = ["test_" + metric for metric in metrics]
|
test_metrics = ["test_" + metric for metric in metrics]
|
||||||
|
|
||||||
scores = pd.DataFrame(columns=["method", "max", "mean"])
|
scores = pd.DataFrame(columns=["method", "max", "mean"])
|
||||||
|
@ -332,127 +340,127 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||||
dummy_class = DummyClassifier(strategy="most_frequent")
|
dummy_class = DummyClassifier(strategy="most_frequent")
|
||||||
|
|
||||||
dummy_score = cross_validate(
|
dummy_score = cross_validate(
|
||||||
dummy_class,
|
dummy_class,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
error_score='raise',
|
error_score="raise",
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Dummy")
|
print("Dummy")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(dummy_score)[test_metrics]
|
scores_df = pd.DataFrame(dummy_score)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "Dummy"
|
scores_df["method"] = "Dummy"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
logistic_regression = linear_model.LogisticRegression()
|
logistic_regression = linear_model.LogisticRegression()
|
||||||
|
|
||||||
log_reg_scores = cross_validate(
|
log_reg_scores = cross_validate(
|
||||||
logistic_regression,
|
logistic_regression,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Logistic regression")
|
print("Logistic regression")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(log_reg_scores)[test_metrics]
|
scores_df = pd.DataFrame(log_reg_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "logistic_reg"
|
scores_df["method"] = "logistic_reg"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
svc = svm.SVC()
|
svc = svm.SVC()
|
||||||
|
|
||||||
svc_scores = cross_validate(
|
svc_scores = cross_validate(
|
||||||
svc,
|
svc,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Support Vector Machine")
|
print("Support Vector Machine")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(svc_scores)[test_metrics]
|
scores_df = pd.DataFrame(svc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "svc"
|
scores_df["method"] = "svc"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
gaussian_nb = naive_bayes.GaussianNB()
|
gaussian_nb = naive_bayes.GaussianNB()
|
||||||
|
|
||||||
gaussian_nb_scores = cross_validate(
|
gaussian_nb_scores = cross_validate(
|
||||||
gaussian_nb,
|
gaussian_nb,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Gaussian Naive Bayes")
|
print("Gaussian Naive Bayes")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(gaussian_nb_scores)[test_metrics]
|
scores_df = pd.DataFrame(gaussian_nb_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "gaussian_naive_bayes"
|
scores_df["method"] = "gaussian_naive_bayes"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
sgdc = linear_model.SGDClassifier()
|
sgdc = linear_model.SGDClassifier()
|
||||||
|
|
||||||
sgdc_scores = cross_validate(
|
sgdc_scores = cross_validate(
|
||||||
sgdc,
|
sgdc,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Stochastic Gradient Descent")
|
print("Stochastic Gradient Descent")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(sgdc_scores)[test_metrics]
|
scores_df = pd.DataFrame(sgdc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "stochastic_gradient_descent"
|
scores_df["method"] = "stochastic_gradient_descent"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
rfc = ensemble.RandomForestClassifier()
|
rfc = ensemble.RandomForestClassifier()
|
||||||
|
|
||||||
rfc_scores = cross_validate(
|
rfc_scores = cross_validate(
|
||||||
rfc,
|
rfc,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("Random Forest")
|
print("Random Forest")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(rfc_scores)[test_metrics]
|
scores_df = pd.DataFrame(rfc_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "random_forest"
|
scores_df["method"] = "random_forest"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
xgb_classifier = XGBClassifier()
|
xgb_classifier = XGBClassifier()
|
||||||
|
|
||||||
xgb_scores = cross_validate(
|
xgb_scores = cross_validate(
|
||||||
xgb_classifier,
|
xgb_classifier,
|
||||||
X=data_x,
|
X=data_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=cv_method,
|
cv=cv_method,
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=metrics
|
scoring=metrics,
|
||||||
)
|
)
|
||||||
print("XGBoost")
|
print("XGBoost")
|
||||||
|
|
||||||
scores_df = pd.DataFrame(xgb_scores)[test_metrics]
|
scores_df = pd.DataFrame(xgb_scores)[test_metrics]
|
||||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||||
scores_df["method"] = "xgboost"
|
scores_df["method"] = "xgboost"
|
||||||
scores = pd.concat([scores, scores_df])
|
scores = pd.concat([scores, scores_df])
|
||||||
|
|
||||||
|
|
|
@ -34,18 +34,114 @@ df_app_categories <- tbl(con, "app_categories") %>%
|
||||||
head(df_app_categories)
|
head(df_app_categories)
|
||||||
table(df_app_categories$play_store_genre)
|
table(df_app_categories$play_store_genre)
|
||||||
|
|
||||||
# Correct some mistakes
|
df_app_categories %>%
|
||||||
df_app_categories %<>% mutate(
|
filter(play_store_genre == "not_found") %>%
|
||||||
play_store_genre = {
|
group_by(play_store_response) %>%
|
||||||
function(x) {
|
count()
|
||||||
|
# All "not_found" have an HTTP status of 404.
|
||||||
|
|
||||||
|
df_app_categories %>%
|
||||||
|
filter(play_store_genre == "not_found") %>%
|
||||||
|
group_by(package_name) %>%
|
||||||
|
count() %>%
|
||||||
|
arrange(desc(n))
|
||||||
|
# All "not_found" apps are unique.
|
||||||
|
|
||||||
|
# Exclude phone manufacturers, custom ROM names and similar.
|
||||||
|
manufacturers <- c(
|
||||||
|
"samsung",
|
||||||
|
"oneplus",
|
||||||
|
"huawei",
|
||||||
|
"xiaomi",
|
||||||
|
"lge",
|
||||||
|
"motorola",
|
||||||
|
"miui",
|
||||||
|
"lenovo",
|
||||||
|
"oppo",
|
||||||
|
"mediatek"
|
||||||
|
)
|
||||||
|
custom_rom <- c("coloros", "lineageos", "myos", "cyanogenmod", "foundation.e")
|
||||||
|
other <- c("android", "wssyncmldm")
|
||||||
|
|
||||||
|
grep_pattern <- paste(c(manufacturers, custom_rom, other), collapse = "|")
|
||||||
|
|
||||||
|
rows_os_manufacturer <- grepl(grep_pattern, df_app_categories$package_name)
|
||||||
|
|
||||||
|
# Explore what remains after excluding above.
|
||||||
|
df_app_categories[!rows_os_manufacturer, ] %>%
|
||||||
|
filter(play_store_genre == "not_found")
|
||||||
|
|
||||||
|
# Also check the relationship between is_system_app and System category.
|
||||||
|
tbl(con, "applications") %>%
|
||||||
|
filter(is_system_app, play_store_genre != "System") %>%
|
||||||
|
count()
|
||||||
|
# They are perfectly correlated.
|
||||||
|
|
||||||
|
# Manually classify apps
|
||||||
|
df_app_categories[df_app_categories$play_store_genre == "not_found",] <-
|
||||||
|
df_app_categories %>%
|
||||||
|
filter(play_store_genre == "not_found") %>%
|
||||||
|
mutate(
|
||||||
|
play_store_genre =
|
||||||
case_when(
|
case_when(
|
||||||
x == "Education,Education" ~ "Education",
|
str_detect(str_to_lower(package_name), grep_pattern) ~ "System",
|
||||||
x == "EducationEducation" ~ "Education",
|
str_detect(str_to_lower(package_name), "straw") ~ "STRAW",
|
||||||
x == "not_found" ~ "System",
|
str_detect(str_to_lower(package_name), "chromium") ~ "Communication", # Same as chrome.
|
||||||
.default = x
|
str_detect(str_to_lower(package_name), "skype") ~ "Communication", # Skype Lite not classified.
|
||||||
|
str_detect(str_to_lower(package_name), "imsservice") ~ "Communication", # IP Multimedia Subsystem
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("covid", "empatica"), collapse = "|")) ~ "Medical",
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("libri", "tachiyomi"), collapse = "|")) ~ "Books & Reference",
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("bricks", "chess"), collapse = "|")) ~ "Casual",
|
||||||
|
str_detect(str_to_lower(package_name), "weather") ~ "Weather",
|
||||||
|
str_detect(str_to_lower(package_name), "excel") ~ "Productivity",
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("qr", "barcode", "archimedes", "mixplorer", "winrar", "filemanager", "shot", "faceunlock", "signin", "milink"), collapse = "|")) ~ "Tools",
|
||||||
|
str_detect(str_to_lower(package_name), "stupeflix") ~ "Photography",
|
||||||
|
str_detect(str_to_lower(package_name), "anyme") ~ "Entertainment",
|
||||||
|
str_detect(str_to_lower(package_name), "vanced") ~ "Video Players & Editors",
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("music", "radio", "dolby"), collapse = "|")) ~ "Music & Audio",
|
||||||
|
str_detect(str_to_lower(package_name), paste(c("tensorflow", "object_detection"), collapse = "|")) ~ "Education",
|
||||||
|
.default = play_store_genre
|
||||||
)
|
)
|
||||||
}
|
)
|
||||||
}(play_store_genre)
|
|
||||||
|
# Explore what remains after classifying above.
|
||||||
|
df_app_categories %>%
|
||||||
|
filter(play_store_genre == "not_found")
|
||||||
|
|
||||||
|
# After this, 13 applications remain, which I will classify as "Other".
|
||||||
|
|
||||||
|
# Correct some mistakes
|
||||||
|
# And classify 'not_found'
|
||||||
|
df_app_categories %<>%
|
||||||
|
mutate(
|
||||||
|
play_store_genre = {
|
||||||
|
function(x) {
|
||||||
|
case_when(
|
||||||
|
x == "Education,Education" ~ "Education",
|
||||||
|
x == "EducationEducation" ~ "Education",
|
||||||
|
x == "not_found" ~ "Other",
|
||||||
|
.default = x
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}(play_store_genre)
|
||||||
|
) %>%
|
||||||
|
select(-package_name) %>%
|
||||||
|
rename(
|
||||||
|
genre = play_store_genre,
|
||||||
|
package_name = package_hash
|
||||||
|
)
|
||||||
|
|
||||||
|
table(df_app_categories$genre)
|
||||||
|
|
||||||
|
df_app_categories %>%
|
||||||
|
group_by(genre) %>%
|
||||||
|
count() %>%
|
||||||
|
arrange(desc(n)) %>%
|
||||||
|
write_csv("play_store_categories_count.csv")
|
||||||
|
|
||||||
|
write_csv(
|
||||||
|
x = select(df_app_categories, c(package_name, genre)),
|
||||||
|
file = "play_store_application_genre_catalogue.csv"
|
||||||
)
|
)
|
||||||
|
|
||||||
dbDisconnect(con)
|
dbDisconnect(con)
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,45 @@
|
||||||
|
genre,n
|
||||||
|
System,261
|
||||||
|
Tools,96
|
||||||
|
Productivity,71
|
||||||
|
Health & Fitness,60
|
||||||
|
Finance,54
|
||||||
|
Communication,39
|
||||||
|
Music & Audio,39
|
||||||
|
Shopping,38
|
||||||
|
Lifestyle,33
|
||||||
|
Education,28
|
||||||
|
News & Magazines,24
|
||||||
|
Maps & Navigation,23
|
||||||
|
Entertainment,21
|
||||||
|
Business,18
|
||||||
|
Travel & Local,18
|
||||||
|
Books & Reference,16
|
||||||
|
Social,16
|
||||||
|
Weather,16
|
||||||
|
Food & Drink,14
|
||||||
|
Sports,14
|
||||||
|
Other,13
|
||||||
|
Photography,13
|
||||||
|
Puzzle,13
|
||||||
|
Video Players & Editors,12
|
||||||
|
Card,9
|
||||||
|
Casual,9
|
||||||
|
Personalization,8
|
||||||
|
Medical,7
|
||||||
|
Board,5
|
||||||
|
Strategy,4
|
||||||
|
House & Home,3
|
||||||
|
Trivia,3
|
||||||
|
Word,3
|
||||||
|
Adventure,2
|
||||||
|
Art & Design,2
|
||||||
|
Auto & Vehicles,2
|
||||||
|
Dating,2
|
||||||
|
Role Playing,2
|
||||||
|
STRAW,2
|
||||||
|
Simulation,2
|
||||||
|
"Board,Brain Games",1
|
||||||
|
"Entertainment,Music & Video",1
|
||||||
|
Parenting,1
|
||||||
|
Racing,1
|
|
2
rapids
2
rapids
|
@ -1 +1 @@
|
||||||
Subproject commit 03687a1ac204f0a4347eb758dada8005f68b0bb1
|
Subproject commit 63f5a526fce4d288499168e1701adadb8b885d82
|
Loading…
Reference in New Issue