Compare commits
11 Commits
297eb45933
...
c66e046014
Author | SHA1 | Date |
---|---|---|
junos | c66e046014 | |
junos | 48118f125d | |
junos | 583ee82e80 | |
junos | 59552c18a9 | |
junos | a4ad4c3200 | |
junos | 7e565c34db | |
junos | d6eea0fc00 | |
junos | 711b451eff | |
junos | 0e66a5a963 | |
junos | c88cecc063 | |
junos | 66754a24aa |
|
@ -3,6 +3,5 @@
|
|||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/rapids/calculatingfeatures" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
|
@ -1,9 +1,8 @@
|
|||
name: straw2analysis
|
||||
channels:
|
||||
- defaults
|
||||
- conda-forge
|
||||
dependencies:
|
||||
- python=3.9
|
||||
- python=3.11
|
||||
- black
|
||||
- isort
|
||||
- flake8
|
||||
|
@ -23,4 +22,5 @@ dependencies:
|
|||
- scikit-learn
|
||||
- sqlalchemy
|
||||
- statsmodels
|
||||
- tabulate
|
||||
- tabulate
|
||||
- xgboost
|
|
@ -15,91 +15,34 @@
|
|||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import yaml
|
||||
from pyprojroot import here
|
||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.dummy import DummyRegressor
|
||||
import xgboost as xg
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
InteractiveShell.ast_node_interactivity = "all"
|
||||
from machine_learning.helper import prepare_regression_model_input
|
||||
from sklearn import gaussian_process, kernel_ridge, linear_model, svm
|
||||
from sklearn.dummy import DummyRegressor
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||
|
||||
# from IPython.core.interactiveshell import InteractiveShell
|
||||
# InteractiveShell.ast_node_interactivity = "all"
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
import machine_learning.features_sensor
|
||||
import machine_learning.labels
|
||||
import machine_learning.model
|
||||
|
||||
# %% [markdown]
|
||||
# # RAPIDS models
|
||||
|
||||
# %% [markdown]
|
||||
# ## PANAS negative affect
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input = pd.read_csv(
|
||||
"../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv"
|
||||
)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
#if "pid" in model_input.columns:
|
||||
# index_columns.append("pid")
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
cv_method = 'half_logo' # logo, half_logo, 5kfold
|
||||
if cv_method == 'logo':
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
else:
|
||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
||||
|
||||
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
||||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
train_x.dtypes
|
||||
cv_method = "half_logo" # logo, half_logo, 5kfold
|
||||
|
||||
train_x, data_y, data_groups = prepare_regression_model_input(model_input, cv_method)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
|
@ -109,7 +52,7 @@ logo.get_n_splits(
|
|||
)
|
||||
|
||||
# Defaults to 5 k folds in cross_validate method
|
||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
||||
if cv_method != "logo" and cv_method != "half_logo":
|
||||
logo = None
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
@ -120,7 +63,7 @@ sum(data_y.isna())
|
|||
dummy_regr = DummyRegressor(strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
dummy_regressor = cross_validate(
|
||||
|
@ -130,12 +73,26 @@ dummy_regressor = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(dummy_regressor['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(dummy_regressor["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(dummy_regressor["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(dummy_regressor["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(dummy_regressor["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Linear Regression
|
||||
|
@ -143,7 +100,7 @@ print("R2", np.median(dummy_regressor['test_r2']))
|
|||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_rapids = linear_model.LinearRegression()
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_scores = cross_validate(
|
||||
|
@ -153,19 +110,33 @@ lin_reg_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(lin_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(lin_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(lin_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(lin_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Linear Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
||||
xgb_r = xg.XGBRegressor(objective="reg:squarederror", n_estimators=10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_reg_scores = cross_validate(
|
||||
|
@ -175,19 +146,33 @@ xgb_reg_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(xgb_reg_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(xgb_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(xgb_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(xgb_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(xgb_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Pseudo Huber Error Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective="reg:pseudohubererror", n_estimators=10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||
|
@ -197,18 +182,32 @@ xgb_psuedo_huber_reg_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(xgb_psuedo_huber_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Ridge regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||
|
||||
# %% tags=[] jupyter={"source_hidden": true}
|
||||
ridge_reg_scores = cross_validate(
|
||||
|
@ -218,12 +217,26 @@ ridge_reg_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(ridge_reg_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(ridge_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(ridge_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(ridge_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(ridge_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Lasso
|
||||
|
@ -239,12 +252,26 @@ lasso_reg_score = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(lasso_reg_score['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(lasso_reg_score["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(lasso_reg_score["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(lasso_reg_score["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(lasso_reg_score["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Bayesian Ridge
|
||||
|
@ -260,12 +287,26 @@ bayesian_ridge_reg_score = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(bayesian_ridge_reg_score["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### RANSAC (outlier robust regression)
|
||||
|
@ -281,12 +322,26 @@ ransac_reg_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(ransac_reg_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(ransac_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(ransac_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(ransac_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(ransac_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Support vector regression
|
||||
|
@ -302,12 +357,25 @@ svr_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(svr_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error", np.median(svr_scores["test_neg_mean_squared_error"])
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(svr_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(svr_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(svr_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Kernel Ridge regression
|
||||
|
@ -323,12 +391,26 @@ kridge_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(kridge_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(kridge_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(kridge_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(kridge_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(kridge_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gaussian Process Regression
|
||||
|
@ -345,11 +427,24 @@ gpr_scores = cross_validate(
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(gpr_scores['test_r2']))
|
||||
print(
|
||||
"Negative Mean Squared Error", np.median(gpr_scores["test_neg_mean_squared_error"])
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(gpr_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(gpr_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(gpr_scores["test_r2"]))
|
||||
|
||||
# %%
|
||||
|
|
|
@ -1,15 +1,18 @@
|
|||
from pathlib import Path
|
||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble, naive_bayes, neighbors, tree
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, cross_validate
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.dummy import DummyRegressor, DummyClassifier
|
||||
|
||||
from xgboost import XGBRegressor, XGBClassifier
|
||||
import xgboost as xg
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn import (
|
||||
ensemble,
|
||||
gaussian_process,
|
||||
kernel_ridge,
|
||||
linear_model,
|
||||
naive_bayes,
|
||||
svm,
|
||||
)
|
||||
from sklearn.dummy import DummyClassifier, DummyRegressor
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||
from xgboost import XGBClassifier, XGBRegressor
|
||||
|
||||
|
||||
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
|
||||
|
@ -65,28 +68,64 @@ def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> P
|
|||
full_path = folder / export_filename
|
||||
return full_path
|
||||
|
||||
|
||||
def insert_row(df, row):
|
||||
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
||||
|
||||
def prepare_regression_model_input(input_csv):
|
||||
|
||||
model_input = pd.read_csv(input_csv)
|
||||
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
def prepare_regression_model_input(model_input, cv_method="logo"):
|
||||
index_columns = [
|
||||
"local_segment",
|
||||
"local_segment_label",
|
||||
"local_segment_start_datetime",
|
||||
"local_segment_end_datetime",
|
||||
]
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
if cv_method == "logo":
|
||||
data_x, data_y, data_groups = (
|
||||
model_input.drop(["target", "pid"], axis=1),
|
||||
model_input["target"],
|
||||
model_input["pid"],
|
||||
)
|
||||
else:
|
||||
model_input["pid_index"] = model_input.groupby("pid").cumcount()
|
||||
model_input["pid_count"] = model_input.groupby("pid")["pid"].transform("count")
|
||||
|
||||
categorical_feature_colnames = ["gender", "startlanguage", "limesurvey_demand_control_ratio_quartile"]
|
||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
model_input["pid_index"] = (
|
||||
model_input["pid_index"] / model_input["pid_count"] + 1
|
||||
).round()
|
||||
model_input["pid_half"] = (
|
||||
model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
||||
)
|
||||
|
||||
data_x, data_y, data_groups = (
|
||||
model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1),
|
||||
model_input["target"],
|
||||
model_input["pid_half"],
|
||||
)
|
||||
|
||||
categorical_feature_colnames = [
|
||||
"gender",
|
||||
"startlanguage",
|
||||
"limesurvey_demand_control_ratio_quartile",
|
||||
]
|
||||
additional_categorical_features = [
|
||||
col
|
||||
for col in data_x.columns
|
||||
if "mostcommonactivity" in col or "homelabel" in col
|
||||
]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
#TODO: check whether limesurvey_demand_control_ratio_quartile NaNs could be replaced meaningfully
|
||||
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||
categorical_features = categorical_features.apply(
|
||||
lambda col: col.astype("category")
|
||||
)
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
|
@ -108,7 +147,7 @@ def run_all_regression_models(input_csv):
|
|||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
metrics = ['r2', 'neg_mean_absolute_error', 'neg_root_mean_squared_error']
|
||||
metrics = ["r2", "neg_mean_absolute_error", "neg_root_mean_squared_error"]
|
||||
test_metrics = ["test_" + metric for metric in metrics]
|
||||
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
||||
|
||||
|
@ -121,13 +160,13 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Dummy model:")
|
||||
print("R^2: ", np.nanmedian(dummy_regr_scores['test_r2']))
|
||||
|
||||
print("R^2: ", np.nanmedian(dummy_regr_scores["test_r2"]))
|
||||
|
||||
scores_df = pd.DataFrame(dummy_regr_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "dummy"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
@ -139,17 +178,17 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Linear regression:")
|
||||
print("R^2: ", np.nanmedian(lin_reg_scores['test_r2']))
|
||||
print("R^2: ", np.nanmedian(lin_reg_scores["test_r2"]))
|
||||
|
||||
scores_df = pd.DataFrame(lin_reg_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "linear_reg"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||
ridge_reg_scores = cross_validate(
|
||||
ridge_reg,
|
||||
X=data_x,
|
||||
|
@ -157,16 +196,15 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Ridge regression")
|
||||
|
||||
scores_df = pd.DataFrame(ridge_reg_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "ridge_reg"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||
lasso_reg_score = cross_validate(
|
||||
lasso_reg,
|
||||
|
@ -175,12 +213,12 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Lasso regression")
|
||||
|
||||
scores_df = pd.DataFrame(lasso_reg_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "lasso_reg"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
@ -192,12 +230,12 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Bayesian Ridge")
|
||||
|
||||
scores_df = pd.DataFrame(bayesian_ridge_reg_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "bayesian_ridge"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
@ -209,29 +247,23 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("RANSAC (outlier robust regression)")
|
||||
|
||||
scores_df = pd.DataFrame(ransac_reg_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "RANSAC"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
svr = svm.SVR()
|
||||
svr_score = cross_validate(
|
||||
svr,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
svr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||
)
|
||||
print("Support vector regression")
|
||||
|
||||
|
||||
scores_df = pd.DataFrame(svr_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "SVR"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
@ -243,80 +275,56 @@ def run_all_regression_models(input_csv):
|
|||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Kernel Ridge regression")
|
||||
|
||||
|
||||
scores_df = pd.DataFrame(kridge_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "kernel_ridge"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
gpr = gaussian_process.GaussianProcessRegressor()
|
||||
gpr_score = cross_validate(
|
||||
gpr,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
gpr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||
)
|
||||
print("Gaussian Process Regression")
|
||||
|
||||
scores_df = pd.DataFrame(gpr_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "gaussian_proc"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||
rfr_score = cross_validate(
|
||||
rfr,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
rfr, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||
)
|
||||
print("Random Forest Regression")
|
||||
|
||||
scores_df = pd.DataFrame(rfr_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "random_forest"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
xgb = XGBRegressor()
|
||||
xgb_score = cross_validate(
|
||||
xgb,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
xgb, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||
)
|
||||
print("XGBoost Regressor")
|
||||
|
||||
scores_df = pd.DataFrame(xgb_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "XGBoost"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
ada = ensemble.AdaBoostRegressor()
|
||||
ada_score = cross_validate(
|
||||
ada,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
ada, X=data_x, y=data_y, groups=data_groups, cv=logo, n_jobs=-1, scoring=metrics
|
||||
)
|
||||
print("ADA Boost Regressor")
|
||||
|
||||
scores_df = pd.DataFrame(ada_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', np.nanmedian]).transpose()
|
||||
scores_df = scores_df.agg(["max", np.nanmedian]).transpose()
|
||||
scores_df["method"] = "ADA_boost"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
@ -324,7 +332,7 @@ def run_all_regression_models(input_csv):
|
|||
|
||||
|
||||
def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
||||
metrics = ['accuracy', 'average_precision', 'recall', 'f1']
|
||||
metrics = ["accuracy", "average_precision", "recall", "f1"]
|
||||
test_metrics = ["test_" + metric for metric in metrics]
|
||||
|
||||
scores = pd.DataFrame(columns=["method", "max", "mean"])
|
||||
|
@ -332,127 +340,127 @@ def run_all_classification_models(data_x, data_y, data_groups, cv_method):
|
|||
dummy_class = DummyClassifier(strategy="most_frequent")
|
||||
|
||||
dummy_score = cross_validate(
|
||||
dummy_class,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score='raise',
|
||||
scoring=metrics
|
||||
dummy_class,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
error_score="raise",
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Dummy")
|
||||
|
||||
scores_df = pd.DataFrame(dummy_score)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "Dummy"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
logistic_regression = linear_model.LogisticRegression()
|
||||
|
||||
log_reg_scores = cross_validate(
|
||||
logistic_regression,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
logistic_regression,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Logistic regression")
|
||||
|
||||
scores_df = pd.DataFrame(log_reg_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "logistic_reg"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
svc = svm.SVC()
|
||||
|
||||
svc_scores = cross_validate(
|
||||
svc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
svc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Support Vector Machine")
|
||||
|
||||
scores_df = pd.DataFrame(svc_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "svc"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
gaussian_nb = naive_bayes.GaussianNB()
|
||||
|
||||
|
||||
gaussian_nb_scores = cross_validate(
|
||||
gaussian_nb,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
gaussian_nb,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Gaussian Naive Bayes")
|
||||
|
||||
scores_df = pd.DataFrame(gaussian_nb_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "gaussian_naive_bayes"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
sgdc = linear_model.SGDClassifier()
|
||||
|
||||
sgdc_scores = cross_validate(
|
||||
sgdc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
sgdc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Stochastic Gradient Descent")
|
||||
|
||||
scores_df = pd.DataFrame(sgdc_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "stochastic_gradient_descent"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
rfc = ensemble.RandomForestClassifier()
|
||||
|
||||
rfc_scores = cross_validate(
|
||||
rfc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
rfc,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("Random Forest")
|
||||
|
||||
scores_df = pd.DataFrame(rfc_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "random_forest"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
xgb_classifier = XGBClassifier()
|
||||
|
||||
xgb_scores = cross_validate(
|
||||
xgb_classifier,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics
|
||||
xgb_classifier,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=cv_method,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
print("XGBoost")
|
||||
|
||||
scores_df = pd.DataFrame(xgb_scores)[test_metrics]
|
||||
scores_df = scores_df.agg(['max', 'mean']).transpose()
|
||||
scores_df = scores_df.agg(["max", "mean"]).transpose()
|
||||
scores_df["method"] = "xgboost"
|
||||
scores = pd.concat([scores, scores_df])
|
||||
|
||||
|
|
|
@ -34,18 +34,114 @@ df_app_categories <- tbl(con, "app_categories") %>%
|
|||
head(df_app_categories)
|
||||
table(df_app_categories$play_store_genre)
|
||||
|
||||
# Correct some mistakes
|
||||
df_app_categories %<>% mutate(
|
||||
play_store_genre = {
|
||||
function(x) {
|
||||
df_app_categories %>%
|
||||
filter(play_store_genre == "not_found") %>%
|
||||
group_by(play_store_response) %>%
|
||||
count()
|
||||
# All "not_found" have an HTTP status of 404.
|
||||
|
||||
df_app_categories %>%
|
||||
filter(play_store_genre == "not_found") %>%
|
||||
group_by(package_name) %>%
|
||||
count() %>%
|
||||
arrange(desc(n))
|
||||
# All "not_found" apps are unique.
|
||||
|
||||
# Exclude phone manufacturers, custom ROM names and similar.
|
||||
manufacturers <- c(
|
||||
"samsung",
|
||||
"oneplus",
|
||||
"huawei",
|
||||
"xiaomi",
|
||||
"lge",
|
||||
"motorola",
|
||||
"miui",
|
||||
"lenovo",
|
||||
"oppo",
|
||||
"mediatek"
|
||||
)
|
||||
custom_rom <- c("coloros", "lineageos", "myos", "cyanogenmod", "foundation.e")
|
||||
other <- c("android", "wssyncmldm")
|
||||
|
||||
grep_pattern <- paste(c(manufacturers, custom_rom, other), collapse = "|")
|
||||
|
||||
rows_os_manufacturer <- grepl(grep_pattern, df_app_categories$package_name)
|
||||
|
||||
# Explore what remains after excluding above.
|
||||
df_app_categories[!rows_os_manufacturer, ] %>%
|
||||
filter(play_store_genre == "not_found")
|
||||
|
||||
# Also check the relationship between is_system_app and System category.
|
||||
tbl(con, "applications") %>%
|
||||
filter(is_system_app, play_store_genre != "System") %>%
|
||||
count()
|
||||
# They are perfectly correlated.
|
||||
|
||||
# Manually classify apps
|
||||
df_app_categories[df_app_categories$play_store_genre == "not_found",] <-
|
||||
df_app_categories %>%
|
||||
filter(play_store_genre == "not_found") %>%
|
||||
mutate(
|
||||
play_store_genre =
|
||||
case_when(
|
||||
x == "Education,Education" ~ "Education",
|
||||
x == "EducationEducation" ~ "Education",
|
||||
x == "not_found" ~ "System",
|
||||
.default = x
|
||||
str_detect(str_to_lower(package_name), grep_pattern) ~ "System",
|
||||
str_detect(str_to_lower(package_name), "straw") ~ "STRAW",
|
||||
str_detect(str_to_lower(package_name), "chromium") ~ "Communication", # Same as chrome.
|
||||
str_detect(str_to_lower(package_name), "skype") ~ "Communication", # Skype Lite not classified.
|
||||
str_detect(str_to_lower(package_name), "imsservice") ~ "Communication", # IP Multimedia Subsystem
|
||||
str_detect(str_to_lower(package_name), paste(c("covid", "empatica"), collapse = "|")) ~ "Medical",
|
||||
str_detect(str_to_lower(package_name), paste(c("libri", "tachiyomi"), collapse = "|")) ~ "Books & Reference",
|
||||
str_detect(str_to_lower(package_name), paste(c("bricks", "chess"), collapse = "|")) ~ "Casual",
|
||||
str_detect(str_to_lower(package_name), "weather") ~ "Weather",
|
||||
str_detect(str_to_lower(package_name), "excel") ~ "Productivity",
|
||||
str_detect(str_to_lower(package_name), paste(c("qr", "barcode", "archimedes", "mixplorer", "winrar", "filemanager", "shot", "faceunlock", "signin", "milink"), collapse = "|")) ~ "Tools",
|
||||
str_detect(str_to_lower(package_name), "stupeflix") ~ "Photography",
|
||||
str_detect(str_to_lower(package_name), "anyme") ~ "Entertainment",
|
||||
str_detect(str_to_lower(package_name), "vanced") ~ "Video Players & Editors",
|
||||
str_detect(str_to_lower(package_name), paste(c("music", "radio", "dolby"), collapse = "|")) ~ "Music & Audio",
|
||||
str_detect(str_to_lower(package_name), paste(c("tensorflow", "object_detection"), collapse = "|")) ~ "Education",
|
||||
.default = play_store_genre
|
||||
)
|
||||
}
|
||||
}(play_store_genre)
|
||||
)
|
||||
|
||||
# Explore what remains after classifying above.
|
||||
df_app_categories %>%
|
||||
filter(play_store_genre == "not_found")
|
||||
|
||||
# After this, 13 applications remain, which I will classify as "Other".
|
||||
|
||||
# Correct some mistakes
|
||||
# And classify 'not_found'
|
||||
df_app_categories %<>%
|
||||
mutate(
|
||||
play_store_genre = {
|
||||
function(x) {
|
||||
case_when(
|
||||
x == "Education,Education" ~ "Education",
|
||||
x == "EducationEducation" ~ "Education",
|
||||
x == "not_found" ~ "Other",
|
||||
.default = x
|
||||
)
|
||||
}
|
||||
}(play_store_genre)
|
||||
) %>%
|
||||
select(-package_name) %>%
|
||||
rename(
|
||||
genre = play_store_genre,
|
||||
package_name = package_hash
|
||||
)
|
||||
|
||||
table(df_app_categories$genre)
|
||||
|
||||
df_app_categories %>%
|
||||
group_by(genre) %>%
|
||||
count() %>%
|
||||
arrange(desc(n)) %>%
|
||||
write_csv("play_store_categories_count.csv")
|
||||
|
||||
write_csv(
|
||||
x = select(df_app_categories, c(package_name, genre)),
|
||||
file = "play_store_application_genre_catalogue.csv"
|
||||
)
|
||||
|
||||
dbDisconnect(con)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,45 @@
|
|||
genre,n
|
||||
System,261
|
||||
Tools,96
|
||||
Productivity,71
|
||||
Health & Fitness,60
|
||||
Finance,54
|
||||
Communication,39
|
||||
Music & Audio,39
|
||||
Shopping,38
|
||||
Lifestyle,33
|
||||
Education,28
|
||||
News & Magazines,24
|
||||
Maps & Navigation,23
|
||||
Entertainment,21
|
||||
Business,18
|
||||
Travel & Local,18
|
||||
Books & Reference,16
|
||||
Social,16
|
||||
Weather,16
|
||||
Food & Drink,14
|
||||
Sports,14
|
||||
Other,13
|
||||
Photography,13
|
||||
Puzzle,13
|
||||
Video Players & Editors,12
|
||||
Card,9
|
||||
Casual,9
|
||||
Personalization,8
|
||||
Medical,7
|
||||
Board,5
|
||||
Strategy,4
|
||||
House & Home,3
|
||||
Trivia,3
|
||||
Word,3
|
||||
Adventure,2
|
||||
Art & Design,2
|
||||
Auto & Vehicles,2
|
||||
Dating,2
|
||||
Role Playing,2
|
||||
STRAW,2
|
||||
Simulation,2
|
||||
"Board,Brain Games",1
|
||||
"Entertainment,Music & Video",1
|
||||
Parenting,1
|
||||
Racing,1
|
|
2
rapids
2
rapids
|
@ -1 +1 @@
|
|||
Subproject commit 03687a1ac204f0a4347eb758dada8005f68b0bb1
|
||||
Subproject commit 63f5a526fce4d288499168e1701adadb8b885d82
|
Loading…
Reference in New Issue