Compare commits

..

No commits in common. "12f2c927fa994791a8100f6e86b2e92c5f052365" and "e33a49c9fcf85ef2ddfef976366d70876261ab4a" have entirely different histories.

45 changed files with 52 additions and 10131 deletions

5
.gitignore vendored
View File

@ -6,8 +6,3 @@ __pycache__/
/config/*.ipynb
/statistical_analysis/*.ipynb
/machine_learning/intermediate_results/
/data/features/
/data/baseline/
/data/*input*.csv
/data/daily*
/data/intradaily*

4
.gitmodules vendored
View File

@ -1,4 +0,0 @@
[submodule "rapids"]
path = rapids
url = https://repo.ijs.si/junoslukan/rapids.git
branch = master

View File

@ -4,17 +4,4 @@
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
<component name="RMarkdownSettings">
<option name="renderProfiles">
<map>
<entry key="file://$PROJECT_DIR$/rapids/src/visualization/merge_heatmap_sensors_per_minute_per_time_segment.Rmd">
<value>
<RMarkdownRenderProfile>
<option name="outputDirectoryUrl" value="file://$PROJECT_DIR$/rapids/src/visualization" />
</RMarkdownRenderProfile>
</value>
</entry>
</map>
</option>
</component>
</project>

View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="SmkProjectSettings" sdk="Python 3.10 (snakemake)" enabled="true" />
</project>

View File

@ -2,6 +2,5 @@
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
<mapping directory="$PROJECT_DIR$/rapids" vcs="Git" />
</component>
</project>

126
README.md
View File

@ -33,129 +33,3 @@ To install:
```
DB_PASSWORD=database-password
```
# RAPIDS
To install RAPIDS, follow the [instructions on their webpage](https://www.rapids.science/1.6/setup/installation/).
Here, I include additional information related to the installation and specific to the STRAW2analysis project.
The installation was tested on Windows using Ubuntu 20.04 on Windows Subsystem for Linux ([WSL2](https://docs.microsoft.com/en-us/windows/wsl/install)).
## Custom configuration
### Credentials
As mentioned under [Database in RAPIDS documentation](https://www.rapids.science/1.6/snippets/database/), a `credentials.yaml` file is needed to connect to a database.
It should contain:
```yaml
PSQL_STRAW:
database: staw
host: 212.235.208.113
password: password
port: 5432
user: staw_db
```
where`password` needs to be specified as well.
## Possible installation issues
### Missing dependencies for RPostgres
To install `RPostgres` R package (used to connect to the PostgreSQL database), an error might occur:
```text
------------------------- ANTICONF ERROR ---------------------------
Configuration failed because libpq was not found. Try installing:
* deb: libpq-dev (Debian, Ubuntu, etc)
* rpm: postgresql-devel (Fedora, EPEL)
* rpm: postgreql8-devel, psstgresql92-devel, postgresql93-devel, or postgresql94-devel (Amazon Linux)
* csw: postgresql_dev (Solaris)
* brew: libpq (OSX)
If libpq is already installed, check that either:
(i) 'pkg-config' is in your PATH AND PKG_CONFIG_PATH contains a libpq.pc file; or
(ii) 'pg_config' is in your PATH.
If neither can detect , you can set INCLUDE_DIR
and LIB_DIR manually via:
R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'
--------------------------[ ERROR MESSAGE ]----------------------------
<stdin>:1:10: fatal error: libpq-fe.h: No such file or directory
compilation terminated.
```
The library requires `libpq` for compiling from source, so install accordingly.
### Timezone environment variable for tidyverse (relevant for WSL2)
One of the R packages, `tidyverse` might need access to the `TZ` environment variable during the installation.
On Ubuntu 20.04 on WSL2 this triggers the following error:
```text
> install.packages('tidyverse')
ERROR: configuration failed for package xml2
System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to create bus connection: Host is down
Warning in system("timedatectl", intern = TRUE) :
running command 'timedatectl' had status 1
Error in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) :
namespace xml2 1.3.1 is already loaded, but >= 1.3.2 is required
Calls: <Anonymous> ... namespaceImportFrom -> asNamespace -> loadNamespace
Execution halted
ERROR: lazy loading failed for package tidyverse
```
This happens because WSL2 does not use the `timedatectl` service, which provides this variable.
```bash
~$ timedatectl
System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to create bus connection: Host is down
```
and later
```bash
Warning message:
In system("timedatectl", intern = TRUE) :
running command 'timedatectl' had status 1
Execution halted
```
This can be amended by setting the environment variable manually before attempting to install `tidyverse`:
```bash
export TZ='Europe/Ljubljana'
```
## Possible runtime issues
### Unix end of line characters
Upon running rapids, an error might occur:
```bash
/usr/bin/env: python3\r: No such file or directory
```
This is due to Windows style end of line characters.
To amend this, I added a `.gitattributes` files to force `git` to checkout `rapids` using Unix EOL characters.
If this still fails, `dos2unix` can be used to change them.
### System has not been booted with systemd as init system (PID 1)
See [the installation issue above](#Timezone-environment-variable-for-tidyverse-(relevant-for-WSL2)).
## Update RAPIDS
To update RAPIDS, first pull and merge [origin]( https://github.com/carissalow/rapids), such as with:
```commandline
git fetch --progress "origin" refs/heads/master
git merge --no-ff origin/master
```
Next, update the conda and R virtual environment.
```bash
R -e 'renv::restore(repos = c(CRAN = "https://packagemanager.rstudio.com/all/__linux__/focal/latest"))'
```

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,323 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %%
import os, sys
import importlib
import pandas as pd
import numpy as np
# import plotly.graph_objects as go
from importlib import util
from pathlib import Path
import yaml
# %%
phone_data_yield = pd.read_csv(
"../rapids/data/interim/p011/phone_yielded_timestamps_with_datetime.csv",
parse_dates=["local_date_time"],
)
time_segments_labels = pd.read_csv(
"../rapids/data/interim/time_segments/p011_time_segments_labels.csv"
)
# %%
phone_data_yield["assigned_segments"] = phone_data_yield[
"assigned_segments"
].str.replace(r"_RR\d+SS#", "#")
time_segments_labels["label"] = time_segments_labels["label"].str.replace(
r"_RR\d+SS$", ""
)
# %% tags=[]
def filter_data_by_segment(data, time_segment):
data.dropna(subset=["assigned_segments"], inplace=True)
if data.shape[0] == 0: # data is empty
data["local_segment"] = data["timestamps_segment"] = None
return data
datetime_regex = "[0-9]{4}[\-|\/][0-9]{2}[\-|\/][0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}"
timestamps_regex = "[0-9]{13}"
segment_regex = "\[({}#{},{};{},{})\]".format(
time_segment, datetime_regex, datetime_regex, timestamps_regex, timestamps_regex
)
data["local_segment"] = data["assigned_segments"].str.extract(
segment_regex, expand=True
)
data = data.drop(columns=["assigned_segments"])
data = data.dropna(subset=["local_segment"])
if (
data.shape[0] == 0
): # there are no rows belonging to time_segment after droping na
data["timestamps_segment"] = None
else:
data[["local_segment", "timestamps_segment"]] = data["local_segment"].str.split(
pat=";", n=1, expand=True
)
# chunk episodes
if (
(not data.empty)
and ("start_timestamp" in data.columns)
and ("end_timestamp" in data.columns)
):
data = chunk_episodes(data)
return data
# %% tags=[]
time_segment = "daily"
phone_data_yield_per_segment = filter_data_by_segment(phone_data_yield, time_segment)
# %%
phone_data_yield.tail()
# %%
phone_data_yield_per_segment.tail()
# %%
def getDataForPlot(phone_data_yield_per_segment):
# calculate the length (in minute) of per segment instance
phone_data_yield_per_segment["length"] = (
phone_data_yield_per_segment["timestamps_segment"]
.str.split(",")
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
)
# calculate the number of sensors logged at least one row of data per minute.
phone_data_yield_per_segment = (
phone_data_yield_per_segment.groupby(
["local_segment", "length", "local_date", "local_hour", "local_minute"]
)[["sensor", "local_date_time"]]
.max()
.reset_index()
)
# extract local start datetime of the segment from "local_segment" column
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
phone_data_yield_per_segment["local_segment"].apply(
lambda x: x.split("#")[1].split(",")[0]
)
)
# calculate the number of minutes after local start datetime of the segment
phone_data_yield_per_segment["minutes_after_segment_start"] = (
(
phone_data_yield_per_segment["local_date_time"]
- phone_data_yield_per_segment["local_segment_start_datetimes"]
)
/ pd.Timedelta(minutes=1)
).astype("int")
# impute missing rows with 0
columns_for_full_index = phone_data_yield_per_segment[
["local_segment_start_datetimes", "length"]
].drop_duplicates(keep="first")
columns_for_full_index = columns_for_full_index.apply(
lambda row: [
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
],
axis=1,
)
full_index = []
for columns in columns_for_full_index:
full_index = full_index + columns
full_index = pd.MultiIndex.from_tuples(
full_index,
names=("local_segment_start_datetimes", "minutes_after_segment_start"),
)
phone_data_yield_per_segment = (
phone_data_yield_per_segment.set_index(
["local_segment_start_datetimes", "minutes_after_segment_start"]
)
.reindex(full_index)
.reset_index()
.fillna(0)
)
# transpose the dataframe per local start datetime of the segment and discard the useless index layer
phone_data_yield_per_segment = phone_data_yield_per_segment.groupby(
"local_segment_start_datetimes"
)[["minutes_after_segment_start", "sensor"]].apply(
lambda x: x.set_index("minutes_after_segment_start").transpose()
)
phone_data_yield_per_segment.index = phone_data_yield_per_segment.index.get_level_values(
"local_segment_start_datetimes"
)
return phone_data_yield_per_segment
# %%
data_for_plot_per_segment = getDataForPlot(phone_data_yield_per_segment)
# %%
# calculate the length (in minute) of per segment instance
phone_data_yield_per_segment["length"] = (
phone_data_yield_per_segment["timestamps_segment"]
.str.split(",")
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
)
# %%
phone_data_yield_per_segment.tail()
# %%
# calculate the number of sensors logged at least one row of data per minute.
phone_data_yield_per_segment = (
phone_data_yield_per_segment.groupby(
["local_segment", "length", "local_date", "local_hour", "local_minute"]
)[["sensor", "local_date_time"]]
.max()
.reset_index()
)
# %%
# extract local start datetime of the segment from "local_segment" column
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
phone_data_yield_per_segment["local_segment"].apply(
lambda x: x.split("#")[1].split(",")[0]
)
)
# %%
# calculate the number of minutes after local start datetime of the segment
phone_data_yield_per_segment["minutes_after_segment_start"] = (
(
phone_data_yield_per_segment["local_date_time"]
- phone_data_yield_per_segment["local_segment_start_datetimes"]
)
/ pd.Timedelta(minutes=1)
).astype("int")
# %%
columns_for_full_index = phone_data_yield_per_segment[
["local_segment_start_datetimes", "length"]
].drop_duplicates(keep="first")
columns_for_full_index = columns_for_full_index.apply(
lambda row: [
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
],
axis=1,
)
# %%
full_index = []
for columns in columns_for_full_index:
full_index = full_index + columns
full_index = pd.MultiIndex.from_tuples(
full_index, names=("local_segment_start_datetimes", "minutes_after_segment_start")
)
# %%
phone_data_yield_per_segment.tail()
# %% [markdown]
# # A workaround
# %%
phone_data_yield_per_segment["local_segment_start_datetimes", "minutes_after_segment_start"] = phone_data_yield_per_segment[
["local_segment_start_datetimes", "minutes_after_segment_start"]
].drop_duplicates(keep="first")
# %%
phone_data_yield_per_segment.set_index(
["local_segment_start_datetimes", "minutes_after_segment_start"],
verify_integrity=True,
).reindex(full_index)
# %%
phone_data_yield_per_segment.head()
# %% [markdown]
# # Retry
# %%
def getDataForPlot(phone_data_yield_per_segment):
# calculate the length (in minute) of per segment instance
phone_data_yield_per_segment["length"] = (
phone_data_yield_per_segment["timestamps_segment"]
.str.split(",")
.apply(lambda x: int((int(x[1]) - int(x[0])) / (1000 * 60)))
)
# calculate the number of sensors logged at least one row of data per minute.
phone_data_yield_per_segment = (
phone_data_yield_per_segment.groupby(
["local_segment", "length", "local_date", "local_hour", "local_minute"]
)[["sensor", "local_date_time"]]
.max()
.reset_index()
)
# extract local start datetime of the segment from "local_segment" column
phone_data_yield_per_segment["local_segment_start_datetimes"] = pd.to_datetime(
phone_data_yield_per_segment["local_segment"].apply(
lambda x: x.split("#")[1].split(",")[0]
)
)
# calculate the number of minutes after local start datetime of the segment
phone_data_yield_per_segment["minutes_after_segment_start"] = (
(
phone_data_yield_per_segment["local_date_time"]
- phone_data_yield_per_segment["local_segment_start_datetimes"]
)
/ pd.Timedelta(minutes=1)
).astype("int")
# impute missing rows with 0
columns_for_full_index = phone_data_yield_per_segment[
["local_segment_start_datetimes", "length"]
].drop_duplicates(keep="first")
columns_for_full_index = columns_for_full_index.apply(
lambda row: [
[row["local_segment_start_datetimes"], x] for x in range(row["length"] + 1)
],
axis=1,
)
full_index = []
for columns in columns_for_full_index:
full_index = full_index + columns
full_index = pd.MultiIndex.from_tuples(
full_index,
names=("local_segment_start_datetimes", "minutes_after_segment_start"),
)
phone_data_yield_per_segment = phone_data_yield_per_segment.drop_duplicates(subset=["local_segment_start_datetimes", "minutes_after_segment_start"],keep="first")
phone_data_yield_per_segment = (
phone_data_yield_per_segment.set_index(
["local_segment_start_datetimes", "minutes_after_segment_start"]
)
.reindex(full_index)
.reset_index()
.fillna(0)
)
# transpose the dataframe per local start datetime of the segment and discard the useless index layer
phone_data_yield_per_segment = phone_data_yield_per_segment.groupby(
"local_segment_start_datetimes"
)[["minutes_after_segment_start", "sensor"]].apply(
lambda x: x.set_index("minutes_after_segment_start").transpose()
)
phone_data_yield_per_segment.index = phone_data_yield_per_segment.index.get_level_values(
"local_segment_start_datetimes"
)
return phone_data_yield_per_segment
# %%
phone_data_yield_per_segment = filter_data_by_segment(phone_data_yield, time_segment)
# %%
data_for_plot_per_segment = getDataForPlot(phone_data_yield_per_segment)
# %%

File diff suppressed because it is too large Load Diff

View File

@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# jupytext_version: 1.11.4
# kernelspec:
# display_name: straw2analysis
# language: python
@ -74,29 +74,3 @@ rows_os_manufacturer = df_category_not_found["package_name"].str.contains(
# %%
with pd.option_context("display.max_rows", None, "display.max_columns", None):
display(df_category_not_found.loc[~rows_os_manufacturer])
# %% [markdown]
# # Export categories
# %% [markdown]
# Rename all of "not_found" to "system" or "other".
# %%
df_app_categories_to_export = df_app_categories.copy()
rows_os_manufacturer_full = (df_app_categories_to_export["package_name"].str.contains(
"|".join(manufacturers + custom_rom + other), case=False
)) & (df_app_categories_to_export["play_store_genre"] == "not_found")
df_app_categories_to_export.loc[rows_os_manufacturer_full, "play_store_genre"] = "System"
# %%
rows_not_found = (df_app_categories_to_export["play_store_genre"] == "not_found")
df_app_categories_to_export.loc[rows_not_found, "play_store_genre"] = "Other"
# %%
df_app_categories_to_export["play_store_genre"].value_counts()
# %%
df_app_categories_to_export.rename(columns={"play_store_genre": "genre"},inplace=True)
df_app_categories_to_export.to_csv("../data/app_categories.csv", columns=["package_hash","genre"],index=False)
# %%

View File

@ -7,7 +7,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# jupytext_version: 1.11.2
# kernelspec:
# display_name: straw2analysis
# language: python
@ -17,7 +17,6 @@
# %%
import os
import sys
import datetime
import seaborn as sns
@ -27,7 +26,6 @@ if nb_dir not in sys.path:
import participants.query_db
from features.esm import *
from features.esm_JCQ import *
from features.esm_SAM import *
# %%
participants_inactive_usernames = participants.query_db.get_usernames(
@ -101,12 +99,6 @@ df_esm_PANAS_summary_participant[df_esm_PANAS_summary_participant["std"] < 0.1]
# %% [markdown]
# # Stress appraisal measure
# %%
df_SAM_all = extract_stressful_events(df_esm_inactive)
# %%
df_SAM_all.head()
# %%
df_esm_SAM = df_esm_preprocessed[
(df_esm_preprocessed["questionnaire_id"] >= 87)

View File

@ -1,385 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
from sklearn.dummy import DummyClassifier
from sklearn.impute import SimpleImputer
from lightgbm import LGBMClassifier
import xgboost as xg
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.labels
import machine_learning.model
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## Set script's parameters
cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/stressfulness_event_nonstandardized/input_appraisal_stressfulness_event_mean.csv")
# %% jupyter={"source_hidden": true}
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
model_input.set_index(index_columns, inplace=True)
model_input['target'].value_counts()
# %% jupyter={"source_hidden": true}
# bins = [-10, -1, 1, 10] # bins for z-scored targets
bins = [0, 1, 4] # bins for stressfulness (1-4) target
model_input['target'], edges = pd.cut(model_input.target, bins=bins, labels=['low', 'high'], retbins=True, right=True) #['low', 'medium', 'high']
model_input['target'].value_counts(), edges
# model_input = model_input[model_input['target'] != "medium"]
model_input['target'] = model_input['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
model_input['target'].value_counts()
if cv_method_str == 'halflogo':
model_input['pid_index'] = model_input.groupby('pid').cumcount()
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
else:
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
# %% jupyter={"source_hidden": true}
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = data_x[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
train_x.dtypes
# %% jupyter={"source_hidden": true}
cv_method = None # Defaults to 5 k-folds in cross_validate method
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
cv_method = LeaveOneGroupOut()
cv_method.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
# %% [markdown]
# ### Baseline: Dummy Classifier (most frequent)
dummy_class = DummyClassifier(strategy="most_frequent")
# %% jupyter={"source_hidden": true}
dummy_classifier = cross_validate(
dummy_class,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'average_precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(dummy_classifier['test_accuracy']))
print("Precision", np.mean(dummy_classifier['test_average_precision']))
print("Recall", np.mean(dummy_classifier['test_recall']))
print("F1", np.mean(dummy_classifier['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dummy_classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dummy_classifier['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Logistic Regression
# %% jupyter={"source_hidden": true}
logistic_regression = linear_model.LogisticRegression()
# %% jupyter={"source_hidden": true}
log_reg_scores = cross_validate(
logistic_regression,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(log_reg_scores['test_accuracy']))
print("Precision", np.mean(log_reg_scores['test_precision']))
print("Recall", np.mean(log_reg_scores['test_recall']))
print("F1", np.mean(log_reg_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-log_reg_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(log_reg_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Support Vector Machine
# %% jupyter={"source_hidden": true}
svc = svm.SVC()
# %% jupyter={"source_hidden": true}
svc_scores = cross_validate(
svc,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(svc_scores['test_accuracy']))
print("Precision", np.mean(svc_scores['test_precision']))
print("Recall", np.mean(svc_scores['test_recall']))
print("F1", np.mean(svc_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-svc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(svc_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Gaussian Naive Bayes
# %% jupyter={"source_hidden": true}
gaussian_nb = naive_bayes.GaussianNB()
# %% jupyter={"source_hidden": true}
gaussian_nb_scores = cross_validate(
gaussian_nb,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(gaussian_nb_scores['test_accuracy']))
print("Precision", np.mean(gaussian_nb_scores['test_precision']))
print("Recall", np.mean(gaussian_nb_scores['test_recall']))
print("F1", np.mean(gaussian_nb_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gaussian_nb_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Stochastic Gradient Descent Classifier
# %% jupyter={"source_hidden": true}
sgdc = linear_model.SGDClassifier()
# %% jupyter={"source_hidden": true}
sgdc_scores = cross_validate(
sgdc,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(sgdc_scores['test_accuracy']))
print("Precision", np.mean(sgdc_scores['test_precision']))
print("Recall", np.mean(sgdc_scores['test_recall']))
print("F1", np.mean(sgdc_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-sgdc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(sgdc_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### K-nearest neighbors
# %% jupyter={"source_hidden": true}
knn = neighbors.KNeighborsClassifier()
# %% jupyter={"source_hidden": true}
knn_scores = cross_validate(
knn,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(knn_scores['test_accuracy']))
print("Precision", np.mean(knn_scores['test_precision']))
print("Recall", np.mean(knn_scores['test_recall']))
print("F1", np.mean(knn_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-knn_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(knn_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Decision Tree
# %% jupyter={"source_hidden": true}
dtree = tree.DecisionTreeClassifier()
# %% jupyter={"source_hidden": true}
dtree_scores = cross_validate(
dtree,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(dtree_scores['test_accuracy']))
print("Precision", np.mean(dtree_scores['test_precision']))
print("Recall", np.mean(dtree_scores['test_recall']))
print("F1", np.mean(dtree_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-dtree_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(dtree_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Random Forest Classifier
# %% jupyter={"source_hidden": true}
rfc = ensemble.RandomForestClassifier()
# %% jupyter={"source_hidden": true}
rfc_scores = cross_validate(
rfc,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(rfc_scores['test_accuracy']))
print("Precision", np.mean(rfc_scores['test_precision']))
print("Recall", np.mean(rfc_scores['test_recall']))
print("F1", np.mean(rfc_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-rfc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(rfc_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### Gradient Boosting Classifier
# %% jupyter={"source_hidden": true}
gbc = ensemble.GradientBoostingClassifier()
# %% jupyter={"source_hidden": true}
gbc_scores = cross_validate(
gbc,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(gbc_scores['test_accuracy']))
print("Precision", np.mean(gbc_scores['test_precision']))
print("Recall", np.mean(gbc_scores['test_recall']))
print("F1", np.mean(gbc_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-gbc_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(gbc_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### LGBM Classifier
# %% jupyter={"source_hidden": true}
lgbm = LGBMClassifier()
# %% jupyter={"source_hidden": true}
lgbm_scores = cross_validate(
lgbm,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(lgbm_scores['test_accuracy']))
print("Precision", np.mean(lgbm_scores['test_precision']))
print("Recall", np.mean(lgbm_scores['test_recall']))
print("F1", np.mean(lgbm_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-lgbm_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(lgbm_scores['test_accuracy'], n_sl)[:n_sl]))
# %% [markdown]
# ### XGBoost Classifier
# %% jupyter={"source_hidden": true}
xgb_classifier = xg.sklearn.XGBClassifier()
# %% jupyter={"source_hidden": true}
xgb_classifier_scores = cross_validate(
xgb_classifier,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
# %% jupyter={"source_hidden": true}
print("Acc", np.mean(xgb_classifier_scores['test_accuracy']))
print("Precision", np.mean(xgb_classifier_scores['test_precision']))
print("Recall", np.mean(xgb_classifier_scores['test_recall']))
print("F1", np.mean(xgb_classifier_scores['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(xgb_classifier_scores['test_accuracy'], n_sl)[:n_sl]))

View File

@ -1,184 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
from sklearn.impute import SimpleImputer
from sklearn.dummy import DummyClassifier
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
from lightgbm import LGBMClassifier
import xgboost as xg
from sklearn.cluster import KMeans
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.labels
import machine_learning.model
from machine_learning.classification_models import ClassificationModels
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## Set script's parameters
n_clusters = 5 # Number of clusters (could be regarded as a hyperparameter)
cv_method_str = 'logo' # logo, halflogo, 5kfold # Cross-validation method (could be regarded as a hyperparameter)
n_sl = 1 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
model_input.columns[list(model_input.columns).index('age'):-1]
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
lime_cols
lime_col = 'limesurvey_demand_control_ratio'
clust_col = lime_col
model_input[clust_col].describe()
# %% jupyter={"source_hidden": true}
# Filter-out outlier rows by clust_col
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
plt.bar(uniq['pid'], uniq[clust_col])
# %% jupyter={"source_hidden": true}
# Get clusters by cluster col & and merge the clusters to main df
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
np.unique(km, return_counts=True)
uniq['cluster'] = km
uniq
model_input = model_input.merge(uniq[['pid', 'cluster']])
# %% jupyter={"source_hidden": true}
model_input.set_index(index_columns, inplace=True)
# %% jupyter={"source_hidden": true}
# Create dict with classification ml models
cm = ClassificationModels()
cmodels = cm.get_cmodels()
# %% jupyter={"source_hidden": true}
for k in range(n_clusters):
model_input_subset = model_input[model_input["cluster"] == k].copy()
bins = [-10, -1, 1, 10] # bins for z-scored targets
model_input_subset.loc[:, 'target'] = \
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high']
model_input_subset['target'].value_counts()
model_input_subset = model_input_subset[model_input_subset['target'] != "medium"]
model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
model_input_subset['target'].value_counts()
if cv_method_str == 'halflogo':
model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount()
model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count')
model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round()
model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"]
else:
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"]
# Treat categorical features
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = data_x[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# Establish cv method
cv_method = None # Defaults to 5 k-folds in cross_validate method
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
cv_method = LeaveOneGroupOut()
cv_method.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
for model_title, model in cmodels.items():
classifier = cross_validate(
model['model'],
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=cv_method,
n_jobs=-1,
error_score='raise',
scoring=('accuracy', 'precision', 'recall', 'f1')
)
print("\n-------------------------------------\n")
print("Current cluster:", k, end="\n")
print("Current model:", model_title, end="\n")
print("Acc", np.mean(classifier['test_accuracy']))
print("Precision", np.mean(classifier['test_precision']))
print("Recall", np.mean(classifier['test_recall']))
print("F1", np.mean(classifier['test_f1']))
print(f"Largest {n_sl} ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n_sl)[:n_sl])[::-1])
print(f"Smallest {n_sl} ACC:", np.sort(np.partition(classifier['test_accuracy'], n_sl)[:n_sl]))
cmodels[model_title]['metrics'][0] += np.mean(classifier['test_accuracy'])
cmodels[model_title]['metrics'][1] += np.mean(classifier['test_precision'])
cmodels[model_title]['metrics'][2] += np.mean(classifier['test_recall'])
cmodels[model_title]['metrics'][3] += np.mean(classifier['test_f1'])
# %% jupyter={"source_hidden": true}
# Get overall results
cm.get_total_models_scores(n_clusters=n_clusters)

View File

@ -1,181 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn.model_selection import LeaveOneGroupOut, cross_validate, train_test_split
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.dummy import DummyClassifier
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
from lightgbm import LGBMClassifier
import xgboost as xg
from sklearn.cluster import KMeans
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.labels
import machine_learning.model
from machine_learning.classification_models import ClassificationModels
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# # Useful method
def treat_categorical_features(input_set):
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in input_set.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
categorical_features = input_set[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = input_set.drop(categorical_feature_colnames, axis=1)
return pd.concat([numerical_features, categorical_features], axis=1)
# %% [markdown]
# ## Set script's parameters
n_clusters = 3 # Number of clusters (could be regarded as a hyperparameter)
n_sl = 3 # Number of largest/smallest accuracies (of particular CV) outputs
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
clust_col = model_input.set_index(index_columns).var().idxmax() # age is a col with the highest variance
model_input.columns[list(model_input.columns).index('age'):-1]
lime_cols = [col for col in model_input if col.startswith('limesurvey')]
lime_cols
lime_col = 'limesurvey_demand_control_ratio'
clust_col = lime_col
model_input[clust_col].describe()
# %% jupyter={"source_hidden": true}
# Filter-out outlier rows by clust_col
model_input = model_input[(np.abs(stats.zscore(model_input[clust_col])) < 3)]
uniq = model_input[[clust_col, 'pid']].drop_duplicates().reset_index(drop=True)
plt.bar(uniq['pid'], uniq[clust_col])
# %% jupyter={"source_hidden": true}
# Get clusters by cluster col & and merge the clusters to main df
km = KMeans(n_clusters=n_clusters).fit_predict(uniq.set_index('pid'))
np.unique(km, return_counts=True)
uniq['cluster'] = km
uniq
model_input = model_input.merge(uniq[['pid', 'cluster']])
# %% jupyter={"source_hidden": true}
model_input.set_index(index_columns, inplace=True)
# %% jupyter={"source_hidden": true}
# Create dict with classification ml models
cm = ClassificationModels()
cmodels = cm.get_cmodels()
# %% jupyter={"source_hidden": true}
for k in range(n_clusters):
model_input_subset = model_input[model_input["cluster"] == k].copy()
# Takes 10th percentile and above 90th percentile as the test set -> the rest for the training set. Only two classes, seperated by z-score of 0.
model_input_subset['numerical_target'] = model_input_subset['target']
bins = [-10, 0, 10] # bins for z-scored targets
model_input_subset.loc[:, 'target'] = \
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=[0, 1], right=True)
p15 = np.percentile(model_input_subset['numerical_target'], 15)
p85 = np.percentile(model_input_subset['numerical_target'], 85)
# Treat categorical features
model_input_subset = treat_categorical_features(model_input_subset)
# Split to train, validate, and test subsets
train_set = model_input_subset[(model_input_subset['numerical_target'] > p15) & (model_input_subset['numerical_target'] < p85)].drop(['numerical_target'], axis=1)
test_set = model_input_subset[(model_input_subset['numerical_target'] <= p15) | (model_input_subset['numerical_target'] >= p85)].drop(['numerical_target'], axis=1)
train_set['target'].value_counts()
test_set['target'].value_counts()
train_x, train_y = train_set.drop(["target", "pid"], axis=1), train_set["target"]
validate_x, test_x, validate_y, test_y = \
train_test_split(test_set.drop(["target", "pid"], axis=1), test_set["target"], test_size=0.50, random_state=42)
# Impute missing values
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
train_x = imputer.fit_transform(train_x)
validate_x = imputer.fit_transform(validate_x)
test_x = imputer.fit_transform(test_x)
for model_title, model in cmodels.items():
model['model'].fit(train_x, train_y)
y_pred = model['model'].predict(validate_x)
acc = accuracy_score(validate_y, y_pred)
prec = precision_score(validate_y, y_pred)
rec = recall_score(validate_y, y_pred)
f1 = f1_score(validate_y, y_pred)
print("\n-------------------------------------\n")
print("Current cluster:", k, end="\n")
print("Current model:", model_title, end="\n")
print("Acc", acc)
print("Precision", prec)
print("Recall", rec)
print("F1", f1)
cmodels[model_title]['metrics'][0] += acc
cmodels[model_title]['metrics'][1] += prec
cmodels[model_title]['metrics'][2] += rec
cmodels[model_title]['metrics'][3] += f1
# %% jupyter={"source_hidden": true}
# Get overall results
cm.get_total_models_scores(n_clusters=n_clusters)

View File

@ -1,355 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yaml
from pyprojroot import here
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
from sklearn.dummy import DummyRegressor
import xgboost as xg
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.features_sensor
import machine_learning.labels
import machine_learning.model
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## PANAS negative affect
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
# %% jupyter={"source_hidden": true}
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
#if "pid" in model_input.columns:
# index_columns.append("pid")
model_input.set_index(index_columns, inplace=True)
cv_method = 'half_logo' # logo, half_logo, 5kfold
if cv_method == 'logo':
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
else:
model_input['pid_index'] = model_input.groupby('pid').cumcount()
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
# %% jupyter={"source_hidden": true}
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
# %% jupyter={"source_hidden": true}
categorical_features = data_x[categorical_feature_colnames].copy()
# %% jupyter={"source_hidden": true}
mode_categorical_features = categorical_features.mode().iloc[0]
# %% jupyter={"source_hidden": true}
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# %% jupyter={"source_hidden": true}
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
# %% jupyter={"source_hidden": true}
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
# %% jupyter={"source_hidden": true}
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# %% jupyter={"source_hidden": true}
train_x.dtypes
# %% jupyter={"source_hidden": true}
logo = LeaveOneGroupOut()
logo.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
# Defaults to 5 k folds in cross_validate method
if cv_method != 'logo' and cv_method != 'half_logo':
logo = None
# %% jupyter={"source_hidden": true}
sum(data_y.isna())
# %% [markdown]
# ### Baseline: Dummy Regression (mean)
dummy_regr = DummyRegressor(strategy="mean")
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
dummy_regressor = cross_validate(
dummy_regr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
print("R2", np.median(dummy_regressor['test_r2']))
# %% [markdown]
# ### Linear Regression
# %% jupyter={"source_hidden": true}
lin_reg_rapids = linear_model.LinearRegression()
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
lin_reg_scores = cross_validate(
lin_reg_rapids,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(lin_reg_scores['test_r2']))
# %% [markdown]
# ### XGBRegressor Linear Regression
# %% jupyter={"source_hidden": true}
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
xgb_reg_scores = cross_validate(
xgb_r,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(xgb_reg_scores['test_r2']))
# %% [markdown]
# ### XGBRegressor Pseudo Huber Error Regression
# %% jupyter={"source_hidden": true}
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
xgb_psuedo_huber_reg_scores = cross_validate(
xgb_psuedo_huber_r,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
# %% [markdown]
# ### Ridge regression
# %% jupyter={"source_hidden": true}
ridge_reg = linear_model.Ridge(alpha=.5)
# %% tags=[] jupyter={"source_hidden": true}
ridge_reg_scores = cross_validate(
ridge_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(ridge_reg_scores['test_r2']))
# %% [markdown]
# ### Lasso
# %% jupyter={"source_hidden": true}
lasso_reg = linear_model.Lasso(alpha=0.1)
# %% jupyter={"source_hidden": true}
lasso_reg_score = cross_validate(
lasso_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
print("R2", np.median(lasso_reg_score['test_r2']))
# %% [markdown]
# ### Bayesian Ridge
# %% jupyter={"source_hidden": true}
bayesian_ridge_reg = linear_model.BayesianRidge()
# %% jupyter={"source_hidden": true}
bayesian_ridge_reg_score = cross_validate(
bayesian_ridge_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
# %% [markdown]
# ### RANSAC (outlier robust regression)
# %% jupyter={"source_hidden": true}
ransac_reg = linear_model.RANSACRegressor()
# %% jupyter={"source_hidden": true}
ransac_reg_scores = cross_validate(
ransac_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(ransac_reg_scores['test_r2']))
# %% [markdown]
# ### Support vector regression
# %% jupyter={"source_hidden": true}
svr = svm.SVR()
# %% jupyter={"source_hidden": true}
svr_scores = cross_validate(
svr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(svr_scores['test_r2']))
# %% [markdown]
# ### Kernel Ridge regression
# %% jupyter={"source_hidden": true}
kridge = kernel_ridge.KernelRidge()
# %% jupyter={"source_hidden": true}
kridge_scores = cross_validate(
kridge,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(kridge_scores['test_r2']))
# %% [markdown]
# ### Gaussian Process Regression
# %% jupyter={"source_hidden": true}
gpr = gaussian_process.GaussianProcessRegressor()
# %% jupyter={"source_hidden": true}
gpr_scores = cross_validate(
gpr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(gpr_scores['test_r2']))
# %%

View File

@ -1,358 +0,0 @@
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# kernelspec:
# display_name: straw2analysis
# language: python
# name: straw2analysis
# ---
# %% jupyter={"source_hidden": true}
# %matplotlib inline
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yaml
from pyprojroot import here
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
from sklearn.model_selection import LeaveOneGroupOut, LeavePGroupsOut, cross_val_score, cross_validate
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
from sklearn.dummy import DummyRegressor
import xgboost as xg
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.features_sensor
import machine_learning.labels
import machine_learning.model
# %% [markdown]
# # RAPIDS models
# %% [markdown]
# ## PANAS negative affect
# %% jupyter={"source_hidden": true}
model_input = pd.read_csv("../data/stressfulness_event/input_appraisal_stressfulness_event_mean.csv")
# %% jupyter={"source_hidden": true}
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
model_input.set_index(index_columns, inplace=True)
cv_method = 'half_logo'
if cv_method == 'logo':
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
else:
model_input[(model_input['pid'] == "p037") | (model_input['pid'] == "p064") | (model_input['pid'] == "p092")]
model_input['pid_index'] = model_input.groupby('pid').cumcount()
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
# %% jupyter={"source_hidden": true}
categorical_feature_colnames = ["gender", "startlanguage"]
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
categorical_feature_colnames += additional_categorical_features
# %% jupyter={"source_hidden": true}
categorical_features = data_x[categorical_feature_colnames].copy()
# %% jupyter={"source_hidden": true}
mode_categorical_features = categorical_features.mode().iloc[0]
# %% jupyter={"source_hidden": true}
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# %% jupyter={"source_hidden": true}
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
# %% jupyter={"source_hidden": true}
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
# %% jupyter={"source_hidden": true}
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# %% jupyter={"source_hidden": true}
train_x.dtypes
# %% jupyter={"source_hidden": true}
logo = LeaveOneGroupOut()
logo.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
# Defaults to 5 k folds in cross_validate method
if cv_method != 'logo' and cv_method != 'half_logo':
logo = None
# %% jupyter={"source_hidden": true}
sum(data_y.isna())
# %% [markdown]
# ### Baseline: Dummy Regression (mean)
dummy_regr = DummyRegressor(strategy="mean")
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
lin_reg_scores = cross_validate(
dummy_regr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(lin_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(lin_reg_scores['test_r2']))
# %% [markdown]
# ### Linear Regression
# %% jupyter={"source_hidden": true}
lin_reg_rapids = linear_model.LinearRegression()
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
lin_reg_scores = cross_validate(
lin_reg_rapids,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(lin_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(lin_reg_scores['test_r2']))
# %% [markdown]
# ### XGBRegressor Linear Regression
# %% jupyter={"source_hidden": true}
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
xgb_reg_scores = cross_validate(
xgb_r,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(xgb_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(xgb_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(xgb_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(xgb_reg_scores['test_r2']))
# %% [markdown]
# ### XGBRegressor Pseudo Huber Error Regression
# %% jupyter={"source_hidden": true}
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
# %% jupyter={"source_hidden": true}
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# %% jupyter={"source_hidden": true}
xgb_psuedo_huber_reg_scores = cross_validate(
xgb_psuedo_huber_r,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(xgb_psuedo_huber_reg_scores['test_r2']))
# %% [markdown]
# ### Ridge regression
# %% jupyter={"source_hidden": true}
ridge_reg = linear_model.Ridge(alpha=.5)
# %% tags=[] jupyter={"source_hidden": true}
ridge_reg_scores = cross_validate(
ridge_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(ridge_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(ridge_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(ridge_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(ridge_reg_scores['test_r2']))
# %% [markdown]
# ### Lasso
# %% jupyter={"source_hidden": true}
lasso_reg = linear_model.Lasso(alpha=0.1)
# %% jupyter={"source_hidden": true}
lasso_reg_score = cross_validate(
lasso_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(lasso_reg_score['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(lasso_reg_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(lasso_reg_score['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(lasso_reg_score['test_r2']))
# %% [markdown]
# ### Bayesian Ridge
# %% jupyter={"source_hidden": true}
bayesian_ridge_reg = linear_model.BayesianRidge()
# %% jupyter={"source_hidden": true}
bayesian_ridge_reg_score = cross_validate(
bayesian_ridge_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(bayesian_ridge_reg_score['test_r2']))
# %% [markdown]
# ### RANSAC (outlier robust regression)
# %% jupyter={"source_hidden": true}
ransac_reg = linear_model.RANSACRegressor()
# %% jupyter={"source_hidden": true}
ransac_reg_scores = cross_validate(
ransac_reg,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(ransac_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(ransac_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(ransac_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(ransac_reg_scores['test_r2']))
# %% [markdown]
# ### Support vector regression
# %% jupyter={"source_hidden": true}
svr = svm.SVR()
# %% jupyter={"source_hidden": true}
svr_scores = cross_validate(
svr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(svr_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(svr_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(svr_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(svr_scores['test_r2']))
# %% [markdown]
# ### Kernel Ridge regression
# %% jupyter={"source_hidden": true}
kridge = kernel_ridge.KernelRidge()
# %% jupyter={"source_hidden": true}
kridge_scores = cross_validate(
kridge,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(kridge_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(kridge_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(kridge_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(kridge_scores['test_r2']))
# %% [markdown]
# ### Gaussian Process Regression
# %% jupyter={"source_hidden": true}
gpr = gaussian_process.GaussianProcessRegressor()
# %% jupyter={"source_hidden": true}
gpr_scores = cross_validate(
gpr,
X=imputer.fit_transform(train_x),
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.nanmedian(gpr_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.nanmedian(gpr_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.nanmedian(gpr_scores['test_neg_root_mean_squared_error']))
print("R2", np.nanmedian(gpr_scores['test_r2']))
# %%

View File

@ -1,30 +0,0 @@
from collections.abc import Collection
import pandas as pd
from config.models import Participant, Timezone
from setup import db_engine, session
def get_timezone_data(usernames: Collection) -> pd.DataFrame:
"""
Read the data from the proximity sensor table and return it in a dataframe.
Parameters
----------
usernames: Collection
A list of usernames to put into the WHERE condition.
Returns
-------
df_proximity: pd.DataFrame
A dataframe of proximity data.
"""
query_timezone = (
session.query(Timezone, Participant.username)
.filter(Participant.id == Timezone.participant_id)
.filter(Participant.username.in_(usernames))
)
with db_engine.connect() as connection:
df_timezone = pd.read_sql(query_timezone.statement, connection)
return df_timezone

View File

@ -1,205 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Generated by graphviz version 2.43.0 (0)
-->
<!-- Title: snakemake_dag Pages: 1 -->
<svg width="548pt" height="625pt"
viewBox="0.00 0.00 548.00 625.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 621)">
<title>snakemake_dag</title>
<polygon fill="white" stroke="transparent" points="-4,4 -4,-621 544,-621 544,4 -4,4"/>
<!-- 0 -->
<g id="node1" class="node">
<title>0</title>
<path fill="none" stroke="#565bd8" stroke-width="2" d="M202,-36C202,-36 172,-36 172,-36 166,-36 160,-30 160,-24 160,-24 160,-12 160,-12 160,-6 166,0 172,0 172,0 202,0 202,0 208,0 214,-6 214,-12 214,-12 214,-24 214,-24 214,-30 208,-36 202,-36"/>
<text text-anchor="middle" x="187" y="-15.5" font-family="sans" font-size="10.00">all</text>
</g>
<!-- 1 -->
<g id="node2" class="node">
<title>1</title>
<path fill="none" stroke="#56d8a9" stroke-width="2" d="M100,-617C100,-617 12,-617 12,-617 6,-617 0,-611 0,-605 0,-605 0,-588 0,-588 0,-582 6,-576 12,-576 12,-576 100,-576 100,-576 106,-576 112,-582 112,-588 112,-588 112,-605 112,-605 112,-611 106,-617 100,-617"/>
<text text-anchor="middle" x="56" y="-605" font-family="sans" font-size="10.00">pull_phone_data</text>
<text text-anchor="middle" x="56" y="-594" font-family="sans" font-size="10.00">pid: nokia_0000003</text>
<text text-anchor="middle" x="56" y="-583" font-family="sans" font-size="10.00">sensor: calls</text>
</g>
<!-- 1&#45;&gt;0 -->
<g id="edge1" class="edge">
<title>1&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M47.83,-575.78C37.21,-548.32 20,-496.76 20,-451 20,-451 20,-451 20,-161 20,-114.96 38.83,-102.85 73,-72 95.21,-51.94 126.33,-38.17 150.45,-29.7"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="151.61,-33 159.97,-26.5 149.38,-26.37 151.61,-33"/>
</g>
<!-- 2 -->
<g id="node3" class="node">
<title>2</title>
<path fill="none" stroke="#56d863" stroke-width="2" d="M124,-540C124,-540 60,-540 60,-540 54,-540 48,-534 48,-528 48,-528 48,-516 48,-516 48,-510 54,-504 60,-504 60,-504 124,-504 124,-504 130,-504 136,-510 136,-516 136,-516 136,-528 136,-528 136,-534 130,-540 124,-540"/>
<text text-anchor="middle" x="92" y="-519.5" font-family="sans" font-size="10.00">calls_episodes</text>
</g>
<!-- 1&#45;&gt;2 -->
<g id="edge9" class="edge">
<title>1&#45;&gt;2</title>
<path fill="none" stroke="grey" stroke-width="2" d="M65.84,-575.69C69.87,-567.56 74.6,-558.03 78.92,-549.33"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="82.09,-550.83 83.4,-540.32 75.82,-547.72 82.09,-550.83"/>
</g>
<!-- 2&#45;&gt;0 -->
<g id="edge2" class="edge">
<title>2&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M85.12,-503.83C75.18,-477.44 58,-425.14 58,-379 58,-379 58,-379 58,-161 58,-105.34 112.96,-61.84 151.14,-38.34"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="153.16,-41.21 159.96,-33.08 149.58,-35.2 153.16,-41.21"/>
</g>
<!-- 3 -->
<g id="node4" class="node">
<title>3</title>
<path fill="none" stroke="#d8a456" stroke-width="2" d="M187.5,-468C187.5,-468 98.5,-468 98.5,-468 92.5,-468 86.5,-462 86.5,-456 86.5,-456 86.5,-444 86.5,-444 86.5,-438 92.5,-432 98.5,-432 98.5,-432 187.5,-432 187.5,-432 193.5,-432 199.5,-438 199.5,-444 199.5,-444 199.5,-456 199.5,-456 199.5,-462 193.5,-468 187.5,-468"/>
<text text-anchor="middle" x="143" y="-453" font-family="sans" font-size="10.00">resample_episodes</text>
<text text-anchor="middle" x="143" y="-442" font-family="sans" font-size="10.00">sensor: phone_calls</text>
</g>
<!-- 2&#45;&gt;3 -->
<g id="edge10" class="edge">
<title>2&#45;&gt;3</title>
<path fill="none" stroke="grey" stroke-width="2" d="M104.61,-503.7C110.6,-495.47 117.88,-485.48 124.48,-476.42"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="127.48,-478.25 130.54,-468.1 121.82,-474.13 127.48,-478.25"/>
</g>
<!-- 3&#45;&gt;0 -->
<g id="edge3" class="edge">
<title>3&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M140.43,-432C136.64,-405.4 130,-352.3 130,-307 130,-307 130,-307 130,-161 130,-117.8 153,-72.19 169.78,-44.66"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="172.83,-46.37 175.19,-36.04 166.91,-42.65 172.83,-46.37"/>
</g>
<!-- 4 -->
<g id="node5" class="node">
<title>4</title>
<path fill="none" stroke="#56d8d8" stroke-width="2" d="M357.5,-396C357.5,-396 194.5,-396 194.5,-396 188.5,-396 182.5,-390 182.5,-384 182.5,-384 182.5,-372 182.5,-372 182.5,-366 188.5,-360 194.5,-360 194.5,-360 357.5,-360 357.5,-360 363.5,-360 369.5,-366 369.5,-372 369.5,-372 369.5,-384 369.5,-384 369.5,-390 363.5,-396 357.5,-396"/>
<text text-anchor="middle" x="276" y="-375.5" font-family="sans" font-size="10.00">resample_episodes_with_datetime</text>
</g>
<!-- 3&#45;&gt;4 -->
<g id="edge11" class="edge">
<title>3&#45;&gt;4</title>
<path fill="none" stroke="grey" stroke-width="2" d="M175.54,-431.88C193.25,-422.55 215.35,-410.92 234.32,-400.94"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="236.12,-403.94 243.34,-396.19 232.86,-397.75 236.12,-403.94"/>
</g>
<!-- 4&#45;&gt;0 -->
<g id="edge4" class="edge">
<title>4&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M250.68,-359.83C218.76,-335.92 168,-289.36 168,-235 168,-235 168,-235 168,-161 168,-120.86 175.55,-74.9 181.13,-46.4"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="184.61,-46.88 183.16,-36.39 177.74,-45.5 184.61,-46.88"/>
</g>
<!-- 8 -->
<g id="node9" class="node">
<title>8</title>
<path fill="none" stroke="#68d856" stroke-width="2" d="M353.5,-324C353.5,-324 248.5,-324 248.5,-324 242.5,-324 236.5,-318 236.5,-312 236.5,-312 236.5,-300 236.5,-300 236.5,-294 242.5,-288 248.5,-288 248.5,-288 353.5,-288 353.5,-288 359.5,-288 365.5,-294 365.5,-300 365.5,-300 365.5,-312 365.5,-312 365.5,-318 359.5,-324 353.5,-324"/>
<text text-anchor="middle" x="301" y="-309" font-family="sans" font-size="10.00">phone_calls_r_features</text>
<text text-anchor="middle" x="301" y="-298" font-family="sans" font-size="10.00">provider_key: rapids</text>
</g>
<!-- 4&#45;&gt;8 -->
<g id="edge15" class="edge">
<title>4&#45;&gt;8</title>
<path fill="none" stroke="grey" stroke-width="2" d="M282.18,-359.7C285,-351.81 288.39,-342.3 291.52,-333.55"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="294.82,-334.7 294.89,-324.1 288.23,-332.34 294.82,-334.7"/>
</g>
<!-- 5 -->
<g id="node6" class="node">
<title>5</title>
<path fill="none" stroke="#afd856" stroke-width="2" d="M475.5,-468C475.5,-468 364.5,-468 364.5,-468 358.5,-468 352.5,-462 352.5,-456 352.5,-456 352.5,-444 352.5,-444 352.5,-438 358.5,-432 364.5,-432 364.5,-432 475.5,-432 475.5,-432 481.5,-432 487.5,-438 487.5,-444 487.5,-444 487.5,-456 487.5,-456 487.5,-462 481.5,-468 475.5,-468"/>
<text text-anchor="middle" x="420" y="-453" font-family="sans" font-size="10.00">process_time_segments</text>
<text text-anchor="middle" x="420" y="-442" font-family="sans" font-size="10.00">pid: nokia_0000003</text>
</g>
<!-- 5&#45;&gt;4 -->
<g id="edge12" class="edge">
<title>5&#45;&gt;4</title>
<path fill="none" stroke="grey" stroke-width="2" d="M384.77,-431.88C365.42,-422.47 341.23,-410.71 320.57,-400.67"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="321.89,-397.41 311.36,-396.19 318.83,-403.71 321.89,-397.41"/>
</g>
<!-- 5&#45;&gt;8 -->
<g id="edge16" class="edge">
<title>5&#45;&gt;8</title>
<path fill="none" stroke="grey" stroke-width="2" d="M415.13,-431.72C409.07,-412.57 397.25,-381.55 379,-360 369.03,-348.23 355.82,-337.94 343.12,-329.64"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="344.79,-326.55 334.45,-324.21 341.08,-332.49 344.79,-326.55"/>
</g>
<!-- 6 -->
<g id="node7" class="node">
<title>6</title>
<path fill="none" stroke="#d86656" stroke-width="2" stroke-dasharray="5,2" d="M322.5,-468C322.5,-468 229.5,-468 229.5,-468 223.5,-468 217.5,-462 217.5,-456 217.5,-456 217.5,-444 217.5,-444 217.5,-438 223.5,-432 229.5,-432 229.5,-432 322.5,-432 322.5,-432 328.5,-432 334.5,-438 334.5,-444 334.5,-444 334.5,-456 334.5,-456 334.5,-462 328.5,-468 322.5,-468"/>
<text text-anchor="middle" x="276" y="-447.5" font-family="sans" font-size="10.00">prepare_tzcodes_file</text>
</g>
<!-- 6&#45;&gt;4 -->
<g id="edge13" class="edge">
<title>6&#45;&gt;4</title>
<path fill="none" stroke="grey" stroke-width="2" d="M276,-431.7C276,-423.98 276,-414.71 276,-406.11"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="279.5,-406.1 276,-396.1 272.5,-406.1 279.5,-406.1"/>
</g>
<!-- 7 -->
<g id="node8" class="node">
<title>7</title>
<path fill="none" stroke="#56d86b" stroke-width="2" stroke-dasharray="5,2" d="M370,-540C370,-540 182,-540 182,-540 176,-540 170,-534 170,-528 170,-528 170,-516 170,-516 170,-510 176,-504 182,-504 182,-504 370,-504 370,-504 376,-504 382,-510 382,-516 382,-516 382,-528 382,-528 382,-534 376,-540 370,-540"/>
<text text-anchor="middle" x="276" y="-519.5" font-family="sans" font-size="10.00">query_usernames_device_empatica_ids</text>
</g>
<!-- 7&#45;&gt;6 -->
<g id="edge14" class="edge">
<title>7&#45;&gt;6</title>
<path fill="none" stroke="grey" stroke-width="2" d="M276,-503.7C276,-495.98 276,-486.71 276,-478.11"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="279.5,-478.1 276,-468.1 272.5,-478.1 279.5,-478.1"/>
</g>
<!-- 8&#45;&gt;0 -->
<g id="edge5" class="edge">
<title>8&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M264.63,-287.8C250.06,-279.08 234.51,-267.11 225,-252 184.07,-186.97 182.71,-92.23 184.91,-46.17"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="188.41,-46.26 185.49,-36.07 181.42,-45.85 188.41,-46.26"/>
</g>
<!-- 9 -->
<g id="node10" class="node">
<title>9</title>
<path fill="none" stroke="#d87556" stroke-width="2" d="M382,-252C382,-252 246,-252 246,-252 240,-252 234,-246 234,-240 234,-240 234,-228 234,-228 234,-222 240,-216 246,-216 246,-216 382,-216 382,-216 388,-216 394,-222 394,-228 394,-228 394,-240 394,-240 394,-246 388,-252 382,-252"/>
<text text-anchor="middle" x="314" y="-237" font-family="sans" font-size="10.00">join_features_from_providers</text>
<text text-anchor="middle" x="314" y="-226" font-family="sans" font-size="10.00">sensor_key: phone_calls</text>
</g>
<!-- 8&#45;&gt;9 -->
<g id="edge17" class="edge">
<title>8&#45;&gt;9</title>
<path fill="none" stroke="grey" stroke-width="2" d="M304.21,-287.7C305.65,-279.98 307.37,-270.71 308.96,-262.11"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="312.44,-262.58 310.82,-252.1 305.56,-261.3 312.44,-262.58"/>
</g>
<!-- 9&#45;&gt;0 -->
<g id="edge6" class="edge">
<title>9&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M294.15,-215.87C283.81,-206.16 271.58,-193.31 263,-180 235.01,-136.57 243.3,-118.11 220,-72 215.36,-62.81 209.61,-53.14 204.23,-44.62"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="207.17,-42.72 198.81,-36.21 201.29,-46.51 207.17,-42.72"/>
</g>
<!-- 10 -->
<g id="node11" class="node">
<title>10</title>
<path fill="none" stroke="#56d8d0" stroke-width="2" d="M526,-180C526,-180 284,-180 284,-180 278,-180 272,-174 272,-168 272,-168 272,-156 272,-156 272,-150 278,-144 284,-144 284,-144 526,-144 526,-144 532,-144 538,-150 538,-156 538,-156 538,-168 538,-168 538,-174 532,-180 526,-180"/>
<text text-anchor="middle" x="405" y="-159.5" font-family="sans" font-size="10.00">merge_sensor_features_for_individual_participants</text>
</g>
<!-- 9&#45;&gt;10 -->
<g id="edge18" class="edge">
<title>9&#45;&gt;10</title>
<path fill="none" stroke="grey" stroke-width="2" d="M336.49,-215.7C347.96,-206.88 362.06,-196.03 374.48,-186.47"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="376.97,-188.98 382.76,-180.1 372.7,-183.43 376.97,-188.98"/>
</g>
<!-- 10&#45;&gt;0 -->
<g id="edge7" class="edge">
<title>10&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M366.3,-143.85C346.21,-134.31 321.62,-121.63 301,-108 280.21,-94.25 277.55,-87.46 258,-72 245.35,-62 231.16,-51.3 218.81,-42.16"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="220.72,-39.22 210.59,-36.1 216.57,-44.85 220.72,-39.22"/>
</g>
<!-- 11 -->
<g id="node12" class="node">
<title>11</title>
<path fill="none" stroke="#56d892" stroke-width="2" d="M528,-108C528,-108 322,-108 322,-108 316,-108 310,-102 310,-96 310,-96 310,-84 310,-84 310,-78 316,-72 322,-72 322,-72 528,-72 528,-72 534,-72 540,-78 540,-84 540,-84 540,-96 540,-96 540,-102 534,-108 528,-108"/>
<text text-anchor="middle" x="425" y="-87.5" font-family="sans" font-size="10.00">merge_sensor_features_for_all_participants</text>
</g>
<!-- 10&#45;&gt;11 -->
<g id="edge19" class="edge">
<title>10&#45;&gt;11</title>
<path fill="none" stroke="grey" stroke-width="2" d="M409.94,-143.7C412.17,-135.9 414.85,-126.51 417.33,-117.83"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="420.73,-118.68 420.11,-108.1 414,-116.76 420.73,-118.68"/>
</g>
<!-- 11&#45;&gt;0 -->
<g id="edge8" class="edge">
<title>11&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M367.08,-71.97C322.5,-58.85 262.21,-41.12 223.96,-29.87"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="224.84,-26.48 214.26,-27.02 222.87,-33.2 224.84,-26.48"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 13 KiB

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 135 KiB

View File

@ -1,68 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Generated by graphviz version 2.43.0 (0)
-->
<!-- Title: snakemake_dag Pages: 1 -->
<svg width="414pt" height="396pt"
viewBox="0.00 0.00 414.00 396.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 392)">
<title>snakemake_dag</title>
<polygon fill="white" stroke="transparent" points="-4,4 -4,-392 410,-392 410,4 -4,4"/>
<!-- 0 -->
<g id="node1" class="node">
<title>0</title>
<text text-anchor="start" x="81" y="-71.6" font-family="sans" font-weight="bold" font-size="18.00">create_participants_files</text>
<text text-anchor="start" x="81" y="-47.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="85" y="-47.8" font-family="sans" font-weight="bold" font-size="14.00">↪ input</text>
<text text-anchor="start" x="143" y="-47.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="81" y="-28" font-family="monospace" font-size="10.00">data/external/example_participants.csv</text>
<text text-anchor="start" x="319" y="-10" font-family="sans" font-size="10.00"> &#160;</text>
<polygon fill="#acd957" stroke="#acd957" points="75,-62 75,-62 333,-62 333,-62 75,-62"/>
<polygon fill="#acd957" stroke="#acd957" points="75,-22 75,-22 333,-22 333,-22 75,-22"/>
<polygon fill="none" stroke="#acd957" stroke-width="2" points="74.5,-1 74.5,-91 331.5,-91 331.5,-1 74.5,-1"/>
</g>
<!-- 1 -->
<g id="node2" class="node">
<title>1</title>
<text text-anchor="start" x="77" y="-221.6" font-family="sans" font-weight="bold" font-size="18.00">prepare_participants_csv</text>
<text text-anchor="start" x="77" y="-197.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="81" y="-197.8" font-family="sans" font-weight="bold" font-size="14.00">↪ input</text>
<text text-anchor="start" x="139" y="-197.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="77" y="-178" font-family="monospace" font-size="10.00">data/external/example_usernames.csv</text>
<text text-anchor="start" x="251" y="-157.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="255" y="-157.8" font-family="sans" font-weight="bold" font-size="14.00">output →</text>
<text text-anchor="start" x="325" y="-157.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="77" y="-138" font-family="monospace" font-size="10.00">data/external/example_participants.csv</text>
<polygon fill="#57d99e" stroke="#57d99e" points="71,-212 71,-212 336,-212 336,-212 71,-212"/>
<polygon fill="#57d99e" stroke="#57d99e" points="71,-172 71,-172 336,-172 336,-172 71,-172"/>
<polygon fill="none" stroke="#57d99e" stroke-width="2" points="71,-129 71,-241 335,-241 335,-129 71,-129"/>
</g>
<!-- 1&#45;&gt;0 -->
<g id="edge1" class="edge">
<title>1&#45;&gt;0</title>
<path fill="none" stroke="grey" stroke-width="2" d="M203,-127.88C203,-119.48 203,-110.81 203,-102.42"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="206.5,-102.36 203,-92.36 199.5,-102.36 206.5,-102.36"/>
</g>
<!-- 2 -->
<g id="node3" class="node">
<title>2</title>
<text text-anchor="start" x="7" y="-367.6" font-family="sans" font-weight="bold" font-size="18.00">query_usernames_device_empatica_ids</text>
<text text-anchor="start" x="7" y="-346" font-family="sans" font-size="10.00"> &#160;</text>
<text text-anchor="start" x="321" y="-325.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="325" y="-325.8" font-family="sans" font-weight="bold" font-size="14.00">output →</text>
<text text-anchor="start" x="395" y="-325.8" font-family="sans" font-size="10.00"> </text>
<text text-anchor="start" x="7" y="-306" font-family="monospace" font-size="10.00">data/external/example_usernames.csv</text>
<text text-anchor="start" x="7" y="-288" font-family="monospace" font-size="10.00">data/external/timezone.csv</text>
<polygon fill="#86d957" stroke="#86d957" points="1,-358 1,-358 406,-358 406,-358 1,-358"/>
<polygon fill="#86d957" stroke="#86d957" points="1,-340 1,-340 406,-340 406,-340 1,-340"/>
<polygon fill="none" stroke="#86d957" stroke-width="2" points="1,-279 1,-387 405,-387 405,-279 1,-279"/>
</g>
<!-- 2&#45;&gt;1 -->
<g id="edge2" class="edge">
<title>2&#45;&gt;1</title>
<path fill="none" stroke="grey" stroke-width="2" d="M203,-277.63C203,-269.45 203,-260.93 203,-252.53"/>
<polygon fill="grey" stroke="grey" stroke-width="2" points="206.5,-252.36 203,-242.36 199.5,-252.36 206.5,-252.36"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 4.6 KiB

View File

@ -1,71 +0,0 @@
from sklearn.dummy import DummyClassifier
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
from lightgbm import LGBMClassifier
import xgboost as xg
class ClassificationModels():
def __init__(self):
self.cmodels = self.init_classification_models()
def get_cmodels(self):
return self.cmodels
def init_classification_models(self):
cmodels = {
'dummy_classifier': {
'model': DummyClassifier(strategy="most_frequent"),
'metrics': [0, 0, 0, 0]
},
'logistic_regression': {
'model': linear_model.LogisticRegression(max_iter=1000),
'metrics': [0, 0, 0, 0]
},
'support_vector_machine': {
'model': svm.SVC(),
'metrics': [0, 0, 0, 0]
},
'gaussian_naive_bayes': {
'model': naive_bayes.GaussianNB(),
'metrics': [0, 0, 0, 0]
},
'stochastic_gradient_descent_classifier': {
'model': linear_model.SGDClassifier(),
'metrics': [0, 0, 0, 0]
},
'knn': {
'model': neighbors.KNeighborsClassifier(),
'metrics': [0, 0, 0, 0]
},
'decision_tree': {
'model': tree.DecisionTreeClassifier(),
'metrics': [0, 0, 0, 0]
},
'random_forest_classifier': {
'model': ensemble.RandomForestClassifier(),
'metrics': [0, 0, 0, 0]
},
'gradient_boosting_classifier': {
'model': ensemble.GradientBoostingClassifier(),
'metrics': [0, 0, 0, 0]
},
'lgbm_classifier': {
'model': LGBMClassifier(),
'metrics': [0, 0, 0, 0]
},
'XGBoost_classifier': {
'model': xg.sklearn.XGBClassifier(),
'metrics': [0, 0, 0, 0]
}
}
return cmodels
def get_total_models_scores(self, n_clusters=1):
for model_title, model in self.cmodels.items():
print("\n************************************\n")
print("Current model:", model_title, end="\n")
print("Acc:", model['metrics'][0]/n_clusters)
print("Precision:", model['metrics'][1]/n_clusters)
print("Recall:", model['metrics'][2]/n_clusters)
print("F1:", model['metrics'][3]/n_clusters)

View File

@ -1,163 +0,0 @@
# %%
import datetime
import importlib
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yaml
from pyprojroot import here
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate, cross_val_predict
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
from sklearn.dummy import DummyRegressor
from sklearn.decomposition import PCA
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import machine_learning.helper
# %%
segment = "intradaily_30_min"
target = "JCQ_job_demand"
csv_name = "./data/" + segment + "_all_targets/input_" + target + "_mean.csv"
#csv_name = "./data/daily_18_hours_all_targets/input_JCQ_job_demand_mean.csv"
# %%
data_x, data_y, data_groups = machine_learning.helper.prepare_model_input(csv_name)
# %%
data_y.head()
# %%
scores = machine_learning.helper.run_all_models(csv_name)
# %% jupyter={"source_hidden": true}
logo = LeaveOneGroupOut()
logo.get_n_splits(
data_x,
data_y,
groups=data_groups,
)
# %% [markdown]
# ### Baseline: Dummy Regression (mean)
dummy_regr = DummyRegressor(strategy="mean")
# %% jupyter={"source_hidden": true}
lin_reg_scores = cross_validate(
dummy_regr,
X=data_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
print("R2", np.median(lin_reg_scores['test_r2']))
##################
# %%
chosen_model = "Random Forest"
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
rfr_score = cross_validate(
rfr,
X=data_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Squared Error", np.median(rfr_score['test_neg_mean_squared_error']))
print("Negative Mean Absolute Error", np.median(rfr_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(rfr_score['test_neg_root_mean_squared_error']))
print("R2", np.median(rfr_score['test_r2']))
# %%
y_predicted = cross_val_predict(rfr, data_x, data_y, groups=data_groups, cv=logo)
#########################
# %%
chosen_model = "Bayesian Ridge"
bayesian_ridge_reg = linear_model.BayesianRidge()
bayesian_ridge_reg_score = cross_validate(
bayesian_ridge_reg,
X=data_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
)
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
# %%
y_predicted = cross_val_predict(bayesian_ridge_reg, data_x, data_y, groups=data_groups, cv=logo)
# %%
data_y = pd.DataFrame(pd.concat([data_y, data_groups], axis=1))
data_y.rename(columns={"target": "y_true"}, inplace=True)
data_y["y_predicted"] = y_predicted
# %%
data_y.head()
# %%
g1 = sns.relplot(data=data_y, x="y_true", y="y_predicted")
#g1.set_axis_labels("true", "predicted")
#g1.map(plt.axhline, y=0, color=".7", dashes=(2, 1), zorder=0)
#g1.map(plt.axline, xy1=(0,0), slope=1)
g1.set(title=",".join([segment, target, chosen_model]))
display(g1)
g1.savefig("_".join([segment, target, chosen_model, "_relplot.pdf"]))
# %%
data_y_long = pd.wide_to_long(
data_y.reset_index(),
i=["local_segment", "pid"],
j="value",
stubnames="y",
sep="_",
suffix=".+",
)
# %%
data_y_long.head()
# %%
g2 = sns.displot(data_y_long, x="y", hue="value", binwidth=0.1, height=5, aspect=1.5)
sns.move_legend(g2, "upper left", bbox_to_anchor=(.55, .45))
g2.set(title=",".join([segment, target, chosen_model]))
g2.savefig("_".join([segment, target, chosen_model, "hist.pdf"]))
# %%
pca = PCA(n_components=2)
pca.fit(data_x)
print(pca.explained_variance_ratio_)
# %%
data_x_pca = pca.fit_transform(data_x)
data_pca = pd.DataFrame(pd.concat([data_y.reset_index()["y_true"], pd.DataFrame(data_x_pca, columns = {"pca_0", "pca_1"})], axis=1))
# %%
data_pca
# %%
g3 = sns.relplot(data = data_pca, x = "pca_0", y = "pca_1", hue = "y_true", palette = sns.color_palette("Spectral", as_cmap=True))
g3.set(title=",".join([segment, target, chosen_model]) + "\n variance explained = " + str(round(sum(pca.explained_variance_ratio_), 2)))
g3.savefig("_".join([segment, target, chosen_model, "_PCA.pdf"]))
# %%

View File

@ -1,13 +1,6 @@
from pathlib import Path
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.impute import SimpleImputer
from sklearn.dummy import DummyRegressor
from xgboost import XGBRegressor
import pandas as pd
import numpy as np
def safe_outer_merge_on_index(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
@ -62,206 +55,3 @@ def construct_full_path(folder: Path, filename_prefix: str, data_type: str) -> P
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
return full_path
def insert_row(df, row):
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
def prepare_model_input(input_csv):
model_input = pd.read_csv(input_csv)
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
model_input.set_index(index_columns, inplace=True)
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
categorical_feature_colnames = ["gender", "startlanguage", "limesurvey_demand_control_ratio_quartile"]
#TODO: check whether limesurvey_demand_control_ratio_quartile NaNs could be replaced meaningfully
#additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
#TODO: check if mostcommonactivity is indeed a categorical features after aggregating
#categorical_feature_colnames += additional_categorical_features
categorical_features = data_x[categorical_feature_colnames].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
return train_x, data_y, data_groups
def run_all_models(input_csv):
# Prepare data
train_x, data_y, data_groups = prepare_model_input(input_csv)
# Prepare cross validation
logo = LeaveOneGroupOut()
logo.get_n_splits(
train_x,
data_y,
groups=data_groups,
)
scores = pd.DataFrame(columns=["method", "median", "max"])
# Validate models
lin_reg_rapids = linear_model.LinearRegression()
lin_reg_scores = cross_val_score(
lin_reg_rapids,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring='r2'
)
print("Linear regression:")
print(np.median(lin_reg_scores))
scores = insert_row(scores, ["Linear regression",np.median(lin_reg_scores),np.max(lin_reg_scores)])
ridge_reg = linear_model.Ridge(alpha=.5)
ridge_reg_scores = cross_val_score(
ridge_reg,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Ridge regression")
print(np.median(ridge_reg_scores))
scores = insert_row(scores, ["Ridge regression",np.median(ridge_reg_scores),np.max(ridge_reg_scores)])
lasso_reg = linear_model.Lasso(alpha=0.1)
lasso_reg_score = cross_val_score(
lasso_reg,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Lasso regression")
print(np.median(lasso_reg_score))
scores = insert_row(scores, ["Lasso regression",np.median(lasso_reg_score),np.max(lasso_reg_score)])
bayesian_ridge_reg = linear_model.BayesianRidge()
bayesian_ridge_reg_score = cross_val_score(
bayesian_ridge_reg,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Bayesian Ridge")
print(np.median(bayesian_ridge_reg_score))
scores = insert_row(scores, ["Bayesian Ridge",np.median(bayesian_ridge_reg_score),np.max(bayesian_ridge_reg_score)])
ransac_reg = linear_model.RANSACRegressor()
ransac_reg_score = cross_val_score(
ransac_reg,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("RANSAC (outlier robust regression)")
print(np.median(ransac_reg_score))
scores = insert_row(scores, ["RANSAC",np.median(ransac_reg_score),np.max(ransac_reg_score)])
svr = svm.SVR()
svr_score = cross_val_score(
svr,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Support vector regression")
print(np.median(svr_score))
scores = insert_row(scores, ["Support vector regression",np.median(svr_score),np.max(svr_score)])
kridge = kernel_ridge.KernelRidge()
kridge_score = cross_val_score(
kridge,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Kernel Ridge regression")
print(np.median(kridge_score))
scores = insert_row(scores, ["Kernel Ridge regression",np.median(kridge_score),np.max(kridge_score)])
gpr = gaussian_process.GaussianProcessRegressor()
gpr_score = cross_val_score(
gpr,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Gaussian Process Regression")
print(np.median(gpr_score))
scores = insert_row(scores, ["Gaussian Process Regression",np.median(gpr_score),np.max(gpr_score)])
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
rfr_score = cross_val_score(
rfr,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("Random Forest Regression")
print(np.median(rfr_score))
scores = insert_row(scores, ["Random Forest Regression",np.median(rfr_score),np.max(rfr_score)])
xgb = XGBRegressor()
xgb_score = cross_val_score(
xgb,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("XGBoost Regressor")
print(np.median(xgb_score))
scores = insert_row(scores, ["XGBoost Regressor",np.median(xgb_score),np.max(xgb_score)])
ada = ensemble.AdaBoostRegressor()
ada_score = cross_val_score(
ada,
X=train_x,
y=data_y,
groups=data_groups,
cv=logo,
n_jobs=-1,
scoring="r2"
)
print("ADA Boost Regressor")
print(np.median(ada_score))
scores = insert_row(scores, ["ADA Boost Regressor",np.median(ada_score),np.max(ada_score)])
return scores

View File

@ -1,69 +0,0 @@
import datetime
import os
import sys
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import pandas as pd
from features.timezone import get_timezone_data
from pyprojroot import here
import participants.query_db
participants_inactive_usernames = participants.query_db.get_usernames(
tester=False, # True participants are wanted.
active=False, # They have all finished their participation.
collection_start=datetime.date.fromisoformat(
"2020-08-01"
), # This is the timeframe of the main study.
last_upload=datetime.date.fromisoformat("2021-09-01"),
)
participants_overview_si = pd.read_csv(
snakemake.params["baseline_folder"] + "Participants_overview_Slovenia.csv", sep=";"
)
participants_overview_be = pd.read_csv(
snakemake.params["baseline_folder"]+ "Participants_overview_Belgium.csv", sep=";"
)
participants_true_si = participants_overview_si[
participants_overview_si["Wristband_SerialNo"] != "DECLINED"
]
participants_true_be = participants_overview_be[
participants_overview_be["SmartphoneBrand+Generation"].str.slice(0, 3) != "Not"
]
# Concatenate participants from both countries.
participants_usernames_empatica = pd.concat(
[participants_true_be, participants_true_si]
)
# Filter only the participants from the main study (queried from the database).
participants_usernames_empatica = participants_usernames_empatica[
participants_usernames_empatica["Username"].isin(participants_inactive_usernames)
]
# Rename and select columns.
participants_usernames_empatica = participants_usernames_empatica.rename(
columns={"Username": "label", "Wristband_SerialNo": "empatica_id"}
)[["label", "empatica_id"]]
# Adapt for csv export.
participants_usernames_empatica["empatica_id"] = participants_usernames_empatica[
"empatica_id"
].str.replace(",", ";")
participants_usernames_empatica.to_csv(
snakemake.output["usernames_file"],
header=True,
index=False,
line_terminator="\n",
)
timezone_df = get_timezone_data(participants_inactive_usernames)
timezone_df.to_csv(
snakemake.output["timezone_file"],
header=True,
index=False,
line_terminator="\n",
)

1
rapids

@ -1 +0,0 @@
Subproject commit f78aa3e7b3567423b44045766b230cd60d557cb0

View File

@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.0
# jupytext_version: 1.12.0
# kernelspec:
# display_name: straw2analysis
# language: python
@ -14,7 +14,25 @@
# ---
# %%
SAVE_FIGS = False
# %matplotlib inline
import datetime
import os
import sys
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
nb_dir = os.path.split(os.getcwd())[0]
if nb_dir not in sys.path:
sys.path.append(nb_dir)
import participants.query_db
from features.esm import *
# %%
SAVE_FIGS = True
FIG_HEIGHT = 5
FIG_ASPECT = 1.7
FIG_COLOUR = "#28827C"