Add classification with clustering ml pipeline script.
parent
7afef5582f
commit
ddde80b421
|
@ -51,13 +51,6 @@ import machine_learning.model
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
||||||
lime_cols = [col for col in model_input if col.startswith('limesurvey_demand')]
|
|
||||||
model_input['limesurvey_demand_control_ratio'].describe()
|
|
||||||
lime_cols
|
|
||||||
|
|
||||||
# TODO: prek lime_cols ustvari klastre, ki jih nato kasneje ločeno preveriš z modeli (npr. k=5). Potrebno bo trikrat ponoviti spodnji postopek.
|
|
||||||
# Pomisli, če gre kaj zavizi v for loop (npr. modeli v seznamu)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
|
@ -0,0 +1,178 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.13.0
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
from scipy import stats
|
||||||
|
|
||||||
|
from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||||
|
from sklearn.dummy import DummyClassifier
|
||||||
|
from sklearn.impute import SimpleImputer
|
||||||
|
from lightgbm import LGBMClassifier
|
||||||
|
import xgboost as xg
|
||||||
|
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
|
||||||
|
from IPython.core.interactiveshell import InteractiveShell
|
||||||
|
InteractiveShell.ast_node_interactivity = "all"
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
import machine_learning.labels
|
||||||
|
import machine_learning.model
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # RAPIDS models
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# ## PANAS negative affect
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
||||||
|
lime_cols = [col for col in model_input if col.startswith('limesurvey_demand')]
|
||||||
|
lime_col = 'limesurvey_demand_control_ratio'
|
||||||
|
model_input[lime_col].describe()
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
|
||||||
|
# Filter-out outlier rows by lime_col
|
||||||
|
model_input = model_input[(np.abs(stats.zscore(model_input[lime_col])) < 3)]
|
||||||
|
|
||||||
|
uniq = model_input[[lime_col, 'pid']].drop_duplicates().reset_index(drop=True)
|
||||||
|
plt.bar(uniq['pid'], uniq[lime_col])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
# Get clusters by lime col & and merge the clusters to main df
|
||||||
|
km = KMeans(n_clusters=5).fit_predict(uniq.set_index('pid'))
|
||||||
|
np.unique(km, return_counts=True)
|
||||||
|
uniq['cluster'] = km
|
||||||
|
uniq
|
||||||
|
|
||||||
|
model_input = model_input.merge(uniq[['pid', 'cluster']])
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
|
# %% jupyter={"source_hidden": true}
|
||||||
|
|
||||||
|
for k in range(5):
|
||||||
|
model_input_subset = model_input[model_input["cluster"] == k].copy()
|
||||||
|
bins = [-10, -1, 1, 10] # bins for z-scored targets
|
||||||
|
model_input_subset.loc[:, 'target'] = \
|
||||||
|
pd.cut(model_input_subset.loc[:, 'target'], bins=bins, labels=['low', 'medium', 'high'], right=False) #['low', 'medium', 'high']
|
||||||
|
model_input_subset['target'].value_counts()
|
||||||
|
model_input_subset = model_input_subset[model_input_subset['target'] != "medium"]
|
||||||
|
model_input_subset['target'] = model_input_subset['target'].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||||
|
|
||||||
|
model_input_subset['target'].value_counts()
|
||||||
|
|
||||||
|
|
||||||
|
cv_method_str = 'logo' # logo, halflogo, 5kfold
|
||||||
|
if cv_method_str == 'halflogo':
|
||||||
|
model_input_subset['pid_index'] = model_input_subset.groupby('pid').cumcount()
|
||||||
|
model_input_subset['pid_count'] = model_input_subset.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
model_input_subset["pid_index"] = (model_input_subset['pid_index'] / model_input_subset['pid_count'] + 1).round()
|
||||||
|
model_input_subset["pid_half"] = model_input_subset["pid"] + "_" + model_input_subset["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input_subset["target"], model_input_subset["pid_half"]
|
||||||
|
else:
|
||||||
|
data_x, data_y, data_groups = model_input_subset.drop(["target", "pid"], axis=1), model_input_subset["target"], model_input_subset["pid"]
|
||||||
|
|
||||||
|
# Treat categorical features
|
||||||
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [] #[col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
|
|
||||||
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||||
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
|
||||||
|
# Establish cv method
|
||||||
|
cv_method = None # Defaults to 5 k-folds in cross_validate method
|
||||||
|
if cv_method_str == 'logo' or cv_method_str == 'half_logo':
|
||||||
|
cv_method = LeaveOneGroupOut()
|
||||||
|
cv_method.get_n_splits(
|
||||||
|
train_x,
|
||||||
|
data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
n = 3
|
||||||
|
|
||||||
|
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
|
||||||
|
|
||||||
|
# Create dict with classification ml models
|
||||||
|
cmodels = {
|
||||||
|
'dummy_classifier': DummyClassifier(strategy="most_frequent"),
|
||||||
|
'logistic_regression': linear_model.LogisticRegression(),
|
||||||
|
'support_vector_machine': svm.SVC(),
|
||||||
|
'gaussian_naive_bayes': naive_bayes.GaussianNB(),
|
||||||
|
'stochastic_gradient_descent_classifier': linear_model.SGDClassifier(),
|
||||||
|
'knn': neighbors.KNeighborsClassifier(),
|
||||||
|
'decision_tree': tree.DecisionTreeClassifier(),
|
||||||
|
'random_forest_classifier': ensemble.RandomForestClassifier(),
|
||||||
|
'gradient_boosting_classifier': ensemble.GradientBoostingClassifier(),
|
||||||
|
'lgbm_classifier': LGBMClassifier(),
|
||||||
|
'XGBoost_classifier': xg.sklearn.XGBClassifier()
|
||||||
|
}
|
||||||
|
|
||||||
|
for model_title, model in cmodels.items():
|
||||||
|
|
||||||
|
classifier = cross_validate(
|
||||||
|
model,
|
||||||
|
X=imputer.fit_transform(train_x),
|
||||||
|
y=data_y,
|
||||||
|
groups=data_groups,
|
||||||
|
cv=cv_method,
|
||||||
|
n_jobs=-1,
|
||||||
|
error_score='raise',
|
||||||
|
scoring=('accuracy', 'average_precision', 'recall', 'f1')
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\n-------------------------------------\n")
|
||||||
|
print("Current cluster:", k, end="\n")
|
||||||
|
print("Current model:", model_title, end="\n")
|
||||||
|
print("Acc", np.median(classifier['test_accuracy']))
|
||||||
|
print("Precision", np.median(classifier['test_average_precision']))
|
||||||
|
print("Recall", np.median(classifier['test_recall']))
|
||||||
|
print("F1", np.median(classifier['test_f1']))
|
||||||
|
print("Largest 5 ACC:", np.sort(-np.partition(-classifier['test_accuracy'], n)[:n])[::-1])
|
||||||
|
print("Smallest 5 ACC:", np.sort(np.partition(classifier['test_accuracy'], n)[:n]))
|
||||||
|
# %%
|
Loading…
Reference in New Issue