Start exploring proximity.
parent
9580533c14
commit
d3f42ea402
|
@ -0,0 +1,69 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.11.4
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# %matplotlib inline
|
||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import seaborn as sns
|
||||||
|
from pytz import timezone
|
||||||
|
from tabulate import tabulate
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
|
||||||
|
import participants.query_db
|
||||||
|
|
||||||
|
TZ_LJ = timezone("Europe/Ljubljana")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from features.proximity import *
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # Basic characteristics
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_nokia = get_proximity_data(["nokia_0000003"])
|
||||||
|
print(df_proximity_nokia)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_nokia.double_proximity.value_counts()
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# `double_proximity` is "the distance to an object in front of the mobile device or binary presence (**manufacturer dependent**)."
|
||||||
|
#
|
||||||
|
# "Most proximity sensors return [the absolute distance, in cm](https://developer.android.com/guide/topics/sensors/sensors_position#sensors-pos-prox), but some return only near and far values.
|
||||||
|
#
|
||||||
|
# Note: Some proximity sensors return binary values that represent "near" or "far." In this case, the sensor usually reports its maximum range value in the far state and a lesser value in the near state. Typically, the far value is a value > 5 cm, but this can vary from sensor to sensor. You can determine a sensor's maximum range by using the getMaximumRange() method."
|
||||||
|
|
||||||
|
# %%
|
||||||
|
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||||
|
df_proximity_inactive = get_proximity_data(participants_inactive_usernames)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_inactive.double_proximity.describe()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
sns.displot(
|
||||||
|
data=df_proximity_inactive, x="double_proximity", binwidth=0.2, height=8,
|
||||||
|
)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_inactive.double_proximity.value_counts()
|
||||||
|
|
||||||
|
# %%
|
|
@ -0,0 +1,30 @@
|
||||||
|
from collections.abc import Collection
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from config.models import Participant, Proximity
|
||||||
|
from setup import db_engine, session
|
||||||
|
|
||||||
|
|
||||||
|
def get_proximity_data(usernames: Collection) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Read the data from the proximity sensor table and return it in a dataframe.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
usernames: Collection
|
||||||
|
A list of usernames to put into the WHERE condition.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df_proximity: pd.DataFrame
|
||||||
|
A dataframe of proximity data.
|
||||||
|
"""
|
||||||
|
query_proximity = (
|
||||||
|
session.query(Proximity, Participant.username)
|
||||||
|
.filter(Participant.id == Proximity.participant_id)
|
||||||
|
.filter(Participant.username.in_(usernames))
|
||||||
|
)
|
||||||
|
with db_engine.connect() as connection:
|
||||||
|
df_proximity = pd.read_sql(query_proximity.statement, connection)
|
||||||
|
return df_proximity
|
Loading…
Reference in New Issue