Update function with imputation already handled.
parent
a5c09a292f
commit
c462d55096
|
@ -69,8 +69,6 @@ def insert_row(df, row):
|
||||||
def run_all_models(input_csv):
|
def run_all_models(input_csv):
|
||||||
# Prepare data
|
# Prepare data
|
||||||
model_input = pd.read_csv(input_csv)
|
model_input = pd.read_csv(input_csv)
|
||||||
model_input.dropna(axis=1, how="all", inplace=True)
|
|
||||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
||||||
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
@ -78,6 +76,8 @@ def run_all_models(input_csv):
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||||
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||||
|
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||||
|
categorical_feature_colnames += additional_categorical_features
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
# fillna with mode
|
# fillna with mode
|
||||||
|
@ -90,8 +90,6 @@ def run_all_models(input_csv):
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||||
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
||||||
train_x_imputed = imputer.fit_transform(train_x)
|
|
||||||
|
|
||||||
# Prepare cross validation
|
# Prepare cross validation
|
||||||
logo = LeaveOneGroupOut()
|
logo = LeaveOneGroupOut()
|
||||||
|
@ -106,7 +104,7 @@ def run_all_models(input_csv):
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
lin_reg_rapids = linear_model.LinearRegression()
|
||||||
lin_reg_scores = cross_val_score(
|
lin_reg_scores = cross_val_score(
|
||||||
lin_reg_rapids,
|
lin_reg_rapids,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -120,7 +118,7 @@ def run_all_models(input_csv):
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||||
ridge_reg_scores = cross_val_score(
|
ridge_reg_scores = cross_val_score(
|
||||||
ridge_reg,
|
ridge_reg,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -134,7 +132,7 @@ def run_all_models(input_csv):
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||||
lasso_reg_score = cross_val_score(
|
lasso_reg_score = cross_val_score(
|
||||||
lasso_reg,
|
lasso_reg,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -148,7 +146,7 @@ def run_all_models(input_csv):
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
bayesian_ridge_reg = linear_model.BayesianRidge()
|
||||||
bayesian_ridge_reg_score = cross_val_score(
|
bayesian_ridge_reg_score = cross_val_score(
|
||||||
bayesian_ridge_reg,
|
bayesian_ridge_reg,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -162,7 +160,7 @@ def run_all_models(input_csv):
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
ransac_reg = linear_model.RANSACRegressor()
|
||||||
ransac_reg_score = cross_val_score(
|
ransac_reg_score = cross_val_score(
|
||||||
ransac_reg,
|
ransac_reg,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -176,7 +174,7 @@ def run_all_models(input_csv):
|
||||||
svr = svm.SVR()
|
svr = svm.SVR()
|
||||||
svr_score = cross_val_score(
|
svr_score = cross_val_score(
|
||||||
svr,
|
svr,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -190,7 +188,7 @@ def run_all_models(input_csv):
|
||||||
kridge = kernel_ridge.KernelRidge()
|
kridge = kernel_ridge.KernelRidge()
|
||||||
kridge_score = cross_val_score(
|
kridge_score = cross_val_score(
|
||||||
kridge,
|
kridge,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -204,7 +202,7 @@ def run_all_models(input_csv):
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
gpr = gaussian_process.GaussianProcessRegressor()
|
||||||
gpr_score = cross_val_score(
|
gpr_score = cross_val_score(
|
||||||
gpr,
|
gpr,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -218,7 +216,7 @@ def run_all_models(input_csv):
|
||||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||||
rfr_score = cross_val_score(
|
rfr_score = cross_val_score(
|
||||||
rfr,
|
rfr,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -232,7 +230,7 @@ def run_all_models(input_csv):
|
||||||
xgb = XGBRegressor()
|
xgb = XGBRegressor()
|
||||||
xgb_score = cross_val_score(
|
xgb_score = cross_val_score(
|
||||||
xgb,
|
xgb,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
@ -246,7 +244,7 @@ def run_all_models(input_csv):
|
||||||
ada = ensemble.AdaBoostRegressor()
|
ada = ensemble.AdaBoostRegressor()
|
||||||
ada_score = cross_val_score(
|
ada_score = cross_val_score(
|
||||||
ada,
|
ada,
|
||||||
X=train_x_imputed,
|
X=train_x,
|
||||||
y=data_y,
|
y=data_y,
|
||||||
groups=data_groups,
|
groups=data_groups,
|
||||||
cv=logo,
|
cv=logo,
|
||||||
|
|
Loading…
Reference in New Issue