Update function with imputation already handled.
parent
a5c09a292f
commit
c462d55096
|
@ -69,8 +69,6 @@ def insert_row(df, row):
|
|||
def run_all_models(input_csv):
|
||||
# Prepare data
|
||||
model_input = pd.read_csv(input_csv)
|
||||
model_input.dropna(axis=1, how="all", inplace=True)
|
||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
||||
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
@ -78,6 +76,8 @@ def run_all_models(input_csv):
|
|||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
# fillna with mode
|
||||
|
@ -90,8 +90,6 @@ def run_all_models(input_csv):
|
|||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||
|
||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
train_x_imputed = imputer.fit_transform(train_x)
|
||||
|
||||
# Prepare cross validation
|
||||
logo = LeaveOneGroupOut()
|
||||
|
@ -106,7 +104,7 @@ def run_all_models(input_csv):
|
|||
lin_reg_rapids = linear_model.LinearRegression()
|
||||
lin_reg_scores = cross_val_score(
|
||||
lin_reg_rapids,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -120,7 +118,7 @@ def run_all_models(input_csv):
|
|||
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||
ridge_reg_scores = cross_val_score(
|
||||
ridge_reg,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -134,7 +132,7 @@ def run_all_models(input_csv):
|
|||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||
lasso_reg_score = cross_val_score(
|
||||
lasso_reg,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -148,7 +146,7 @@ def run_all_models(input_csv):
|
|||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
||||
bayesian_ridge_reg_score = cross_val_score(
|
||||
bayesian_ridge_reg,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -162,7 +160,7 @@ def run_all_models(input_csv):
|
|||
ransac_reg = linear_model.RANSACRegressor()
|
||||
ransac_reg_score = cross_val_score(
|
||||
ransac_reg,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -176,7 +174,7 @@ def run_all_models(input_csv):
|
|||
svr = svm.SVR()
|
||||
svr_score = cross_val_score(
|
||||
svr,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -190,7 +188,7 @@ def run_all_models(input_csv):
|
|||
kridge = kernel_ridge.KernelRidge()
|
||||
kridge_score = cross_val_score(
|
||||
kridge,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -204,7 +202,7 @@ def run_all_models(input_csv):
|
|||
gpr = gaussian_process.GaussianProcessRegressor()
|
||||
gpr_score = cross_val_score(
|
||||
gpr,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -218,7 +216,7 @@ def run_all_models(input_csv):
|
|||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||
rfr_score = cross_val_score(
|
||||
rfr,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -232,7 +230,7 @@ def run_all_models(input_csv):
|
|||
xgb = XGBRegressor()
|
||||
xgb_score = cross_val_score(
|
||||
xgb,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
@ -246,7 +244,7 @@ def run_all_models(input_csv):
|
|||
ada = ensemble.AdaBoostRegressor()
|
||||
ada_score = cross_val_score(
|
||||
ada,
|
||||
X=train_x_imputed,
|
||||
X=train_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
|
|
Loading…
Reference in New Issue