Save calculated features to csv files.

rapids
junos 2021-08-23 16:36:26 +02:00
parent 0152fbe4ac
commit c1bb4ddf0f
5 changed files with 61 additions and 115 deletions

View File

@ -15,6 +15,7 @@ dependencies:
- psycopg2
- python-dotenv
- pytz
- pyprojroot
- pyyaml
- seaborn
- scikit-learn

View File

@ -169,6 +169,9 @@ print(sensor_features_params)
sensor_features = pipeline.SensorFeatures(**sensor_features_params)
sensor_features.data_types
# %%
sensor_features.set_participants_label("nokia_0000003")
# %%
sensor_features.data_types = ["proximity", "communication"]
sensor_features.participants_usernames = ptcp_2

View File

@ -7,7 +7,7 @@ from setup import db_engine, session
FILL_NA_PROXIMITY = {
"freq_prox_near": 0,
"prop_prox_near": 1/2 # Of the form of a / (a + b).
"prop_prox_near": 1 / 2, # Of the form of a / (a + b).
}
FEATURES_PROXIMITY = list(FILL_NA_PROXIMITY.keys())

View File

@ -1,4 +1,4 @@
grouping_variable: [date_lj]
grouping_variable: date_lj
features:
proximity:
all

View File

@ -1,9 +1,12 @@
import datetime
import warnings
from collections.abc import Collection
from pathlib import Path
import numpy as np
import pandas as pd
import yaml
from pyprojroot import here
from sklearn import linear_model
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
@ -11,22 +14,32 @@ import participants.query_db
from features import communication, esm, helper, proximity
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
WARNING_PARTICIPANTS_LABEL = (
"Before calculating features, please set participants label using self.set_participants_label() "
"to be used as a filename prefix when exporting data. "
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
)
class SensorFeatures:
def __init__(
self,
grouping_variable: list,
grouping_variable: str,
features: dict,
participants_usernames: Collection = None,
):
self.grouping_variable = grouping_variable
self.grouping_variable_name = grouping_variable
self.grouping_variable = [grouping_variable]
self.data_types = features.keys()
self.participants_label: str = ""
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_label = "all"
self.participants_usernames = participants_usernames
self.df_features_all = pd.DataFrame()
@ -37,6 +50,10 @@ class SensorFeatures:
self.df_calls = pd.DataFrame()
self.df_sms = pd.DataFrame()
self.df_calls_sms = pd.DataFrame()
self.folder = None
self.filename_prefix = ""
self.construct_export_path()
print("SensorFeatures initialized.")
def set_sensor_data(self):
@ -67,6 +84,8 @@ class SensorFeatures:
def calculate_features(self):
print("Calculating features ...")
if not self.participants_label:
raise ValueError(WARNING_PARTICIPANTS_LABEL)
if "proximity" in self.data_types:
self.df_proximity_counts = proximity.count_proximity(
self.df_proximity, self.grouping_variable
@ -75,6 +94,9 @@ class SensorFeatures:
self.df_features_all, self.df_proximity_counts
)
print("Calculated proximity features.")
to_csv_with_settings(
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
)
if "communication" in self.data_types:
self.df_calls_sms = communication.calls_sms_features(
@ -86,16 +108,15 @@ class SensorFeatures:
self.df_features_all, self.df_calls_sms
)
print("Calculated communication features.")
to_csv_with_settings(
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
)
self.df_features_all.fillna(
value=proximity.FILL_NA_PROXIMITY,
inplace=True,
downcast="infer",
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
)
self.df_features_all.fillna(
value=communication.FILL_NA_CALLS_SMS_ALL,
inplace=True,
downcast="infer",
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
)
def get_features(self, data_type, feature_names) -> pd.DataFrame:
@ -112,6 +133,18 @@ class SensorFeatures:
else:
raise KeyError("This data type has not been implemented.")
def construct_export_path(self):
if not self.participants_label:
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
self.folder = here("machine_learning/intermediate_results/features", warn=True)
self.filename_prefix = (
self.participants_label + "_" + self.grouping_variable_name
)
def set_participants_label(self, label: str):
self.participants_label = label
self.construct_export_path()
class Labels:
def __init__(
@ -252,111 +285,20 @@ def safe_outer_merge_on_index(left, right):
)
class MachineLearningPipeline:
def __init__(
self,
labels_questionnaire,
labels_scale,
data_types,
participants_usernames=None,
feature_names=None,
grouping_variable=None,
):
if participants_usernames is None:
participants_usernames = participants.query_db.get_usernames(
collection_start=datetime.date.fromisoformat("2020-08-01")
)
self.participants_usernames = participants_usernames
self.labels_questionnaire = labels_questionnaire
self.data_types = data_types
if feature_names is None:
self.feature_names = []
self.df_features = pd.DataFrame()
self.labels_scale = labels_scale
self.df_labels = pd.DataFrame()
self.grouping_variable = grouping_variable
self.df_groups = pd.DataFrame()
self.model = None
self.validation_method = None
self.df_esm = pd.DataFrame()
self.df_esm_preprocessed = pd.DataFrame()
self.df_esm_interest = pd.DataFrame()
self.df_esm_clean = pd.DataFrame()
self.df_full_data_daily_means = pd.DataFrame()
self.df_esm_daily_means = pd.DataFrame()
self.df_proximity_daily_counts = pd.DataFrame()
# def get_labels(self):
# self.df_esm = esm.get_esm_data(self.participants_usernames)
# self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
# if self.labels_questionnaire == "PANAS":
# self.df_esm_interest = self.df_esm_preprocessed[
# (
# self.df_esm_preprocessed["questionnaire_id"]
# == QUESTIONNAIRE_IDS.get("PANAS").get("PA")
# )
# | (
# self.df_esm_preprocessed["questionnaire_id"]
# == QUESTIONNAIRE_IDS.get("PANAS").get("NA")
# )
# ]
# self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
# def aggregate_daily(self):
# self.df_esm_daily_means = (
# self.df_esm_clean.groupby(["participant_id", "date_lj", "questionnaire_id"])
# .esm_user_answer_numeric.agg("mean")
# .reset_index()
# .rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
# )
# self.df_esm_daily_means = (
# self.df_esm_daily_means.pivot(
# index=["participant_id", "date_lj"],
# columns="questionnaire_id",
# values="esm_numeric_mean",
# )
# .reset_index(col_level=1)
# .rename(columns=QUESTIONNAIRE_IDS_RENAME)
# .set_index(["participant_id", "date_lj"])
# )
# self.df_full_data_daily_means = self.df_esm_daily_means.copy()
# if "proximity" in self.data_types:
# self.df_proximity_daily_counts = proximity.count_proximity(
# self.df_proximity, ["participant_id", "date_lj"]
# )
# self.df_full_data_daily_means = self.df_full_data_daily_means.join(
# self.df_proximity_daily_counts
# )
def assign_columns(self):
self.df_features = self.df_full_data_daily_means[self.feature_names]
self.df_labels = self.df_full_data_daily_means[self.labels_scale]
if self.grouping_variable:
self.df_groups = self.df_full_data_daily_means[self.grouping_variable]
else:
self.df_groups = None
def validate_model(self):
if self.model is None:
raise AttributeError(
"Please, specify a machine learning model first, by setting the .model attribute."
)
if self.validation_method is None:
raise AttributeError(
"Please, specify a cross validation method first, by setting the .validation_method attribute."
)
cross_val_score(
estimator=self.model,
X=self.df_features,
y=self.df_labels,
groups=self.df_groups,
cv=self.validation_method,
n_jobs=-1,
)
def to_csv_with_settings(
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
) -> None:
export_filename = filename_prefix + "_" + data_type + ".csv"
full_path = folder / export_filename
df.to_csv(
path_or_buf=full_path,
sep=",",
na_rep="NA",
header=True,
index=False,
encoding="utf-8",
)
print("Exported the dataframe to " + str(full_path))
if __name__ == "__main__":