Clean and fix Preprocessing module.

ml_pipeline
Primoz 2023-02-23 10:40:58 +01:00
parent 9ed863b7a1
commit bccc1cd1de
1 changed files with 14 additions and 45 deletions

View File

@ -5,13 +5,12 @@ import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import LeaveOneGroupOut, StratifiedKFold
class Preprocessing:
"""This class presents Preprocessing methods which can be used in context of an individual CV iteration or, simply, on whole data.
It's blind to the test data - e.g, it imputes the test data with train data mean.
This means, it somehow needs an access to the information about data split. In context
"""
def __init__(self, train_X, train_y, test_X, test_y):
self.train_X = train_X
@ -19,46 +18,8 @@ class Preprocessing:
self.test_X = test_X
self.test_y = test_y
# TODO This is probably NOT in the right place in this class ...
def prepare_data_for_cross_validation(self):
data = self.data.copy()
if self.cv_method == "logo":
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
elif self.cv_method == "half_logo":
data['pid_index'] = data.groupby('pid').cumcount()
data['pid_count'] = data.groupby('pid')['pid'].transform('count')
data["pid_index"] = (data['pid_index'] / data['pid_count'] + 1).round()
data["pid_half"] = data["pid"] + "_" + data["pid_index"].astype(int).astype(str)
data_X, data_y, data_groups = data.drop(["target", "pid", "pid_index", "pid_half"], axis=1), data["target"], data["pid_half"]
elif self.cv_method == "5kfold":
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
return data_X, data_y, data_groups
# TODO This is probably NOT in the right place in this class ...
def initialize_cv_method(self, cv_method):
self.cv_method = cv_method
self.X, self.y, self.groups = self.prepare_data_for_cross_validation()
if cv_method in ["logo", "half_logo"]:
cv = LeaveOneGroupOut()
elif cv_method == "5kfold":
cv = StratifiedKFold(n_splits=5, shuffle=True)
def get_cv_train_test_split():
# TODO: for loop nad vsemi možnimi loso spliti? Skratka, ta preprocessin razred že dobi posamezno instanco train-testa
# (torej 55 udeležencev proti 1 udeležencu).
# Možno bi bilo tudi, da se naredi razred, ki handla oboje, vendar bi pri tem prišlo do morebitnih napačnih interpretacij.
pass
def one_hot_encoder(categorical_features, numerical_features, mode):
def one_hot_encoder(self, categorical_features, numerical_features, mode):
"""
This code is an implementation of one-hot encoding. It takes in two data sets,
one with categorical features and one with numerical features and a mode parameter.
@ -103,7 +64,6 @@ class Preprocessing:
categorical_columns (list, optional): List of categorical columns in the dataset.
Defaults to ["gender", "startlanguage", "mostcommonactivity", "homelabel"].
TODO: TESTING
"""
categorical_columns = [col for col in self.train_X.columns if col in categorical_columns]
@ -111,16 +71,16 @@ class Preprocessing:
train_X_categorical_features = self.train_X[categorical_columns].copy()
train_X_numerical_features = self.train_X.drop(categorical_columns, axis=1)
mode_train_X_categorical_features = train_X_categorical_features.mode()
mode_train_X_categorical_features = train_X_categorical_features.mode().iloc[0]
self.train_X = one_hot_encoder(train_X_categorical_features, train_X_numerical_features, mode_train_X_categorical_features)
self.train_X = self.one_hot_encoder(train_X_categorical_features, train_X_numerical_features, mode_train_X_categorical_features)
# For test set
test_X_categorical_features = self.test_X[categorical_columns].copy()
test_X_numerical_features = self.test_X.drop(categorical_columns, axis=1)
self.test_X = one_hot_encoder(test_X_categorical_features, test_X_numerical_features, mode_train_X_categorical_features)
self.test_X = self.one_hot_encoder(test_X_categorical_features, test_X_numerical_features, mode_train_X_categorical_features)
def imputer(self, interval_feature_list, other_feature_list, groupby_feature="pid"):
@ -152,6 +112,15 @@ class Preprocessing:
medians = self.train_X[other_feature_list].median()
self.train_X[other_feature_list].fillna(medians, inplace=True)
self.test_X[other_feature_list].fillna(medians, inplace=True)
def get_train_test_sets(self):
"""Train and test sets getter
Returns:
tuple of Pandas DataFrames: Gets train test sets in traditional sklearn format.
"""
return self.train_X, self.train_y, self.test_X, self.test_y