Add a new file tailored for stressfulness event regression.
parent
87ebb9f296
commit
b59798df26
|
@ -0,0 +1,347 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.13.0
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %matplotlib inline
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import yaml
|
||||
from pyprojroot import here
|
||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
||||
from sklearn.model_selection import LeaveOneGroupOut, LeavePGroupsOut, cross_val_score, cross_validate
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.dummy import DummyRegressor
|
||||
import xgboost as xg
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
InteractiveShell.ast_node_interactivity = "all"
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
import machine_learning.features_sensor
|
||||
import machine_learning.labels
|
||||
import machine_learning.model
|
||||
|
||||
# %% [markdown]
|
||||
# # RAPIDS models
|
||||
|
||||
# %% [markdown]
|
||||
# ## PANAS negative affect
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
model_input = pd.read_csv("../data/stressfulness_event/input_appraisal_stressfulness_event_mean.csv")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||
#if "pid" in model_input.columns:
|
||||
# index_columns.append("pid")
|
||||
model_input.set_index(index_columns, inplace=True)
|
||||
|
||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
train_x.dtypes
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
train_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
logo.split(
|
||||
train_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
sum(data_y.isna())
|
||||
|
||||
# %% [markdown]
|
||||
# ### Baseline: Dummy Regression (mean)
|
||||
dummy_regr = DummyRegressor(strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_scores = cross_validate(
|
||||
dummy_regr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(lin_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(lin_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Linear Regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_rapids = linear_model.LinearRegression()
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_scores = cross_validate(
|
||||
lin_reg_rapids,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(lin_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(lin_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(lin_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Linear Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_reg_scores = cross_validate(
|
||||
xgb_r,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(xgb_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(xgb_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(xgb_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Pseudo Huber Error Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||
xgb_psuedo_huber_r,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(xgb_psuedo_huber_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Ridge regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
||||
|
||||
# %% tags=[] jupyter={"source_hidden": true}
|
||||
ridge_reg_scores = cross_validate(
|
||||
ridge_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(ridge_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(ridge_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(ridge_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Lasso
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lasso_reg_score = cross_validate(
|
||||
lasso_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(lasso_reg_score['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(lasso_reg_score['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(lasso_reg_score['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(lasso_reg_score['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Bayesian Ridge
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bayesian_ridge_reg_score = cross_validate(
|
||||
bayesian_ridge_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(bayesian_ridge_reg_score['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### RANSAC (outlier robust regression)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ransac_reg = linear_model.RANSACRegressor()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ransac_reg_scores = cross_validate(
|
||||
ransac_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(ransac_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(ransac_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(ransac_reg_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Support vector regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svr = svm.SVR()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svr_scores = cross_validate(
|
||||
svr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(svr_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(svr_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(svr_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(svr_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Kernel Ridge regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
kridge = kernel_ridge.KernelRidge()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
kridge_scores = cross_validate(
|
||||
kridge,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(kridge_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(kridge_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(kridge_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(kridge_scores['test_r2']))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gaussian Process Regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gpr = gaussian_process.GaussianProcessRegressor()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
||||
gpr_scores = cross_validate(
|
||||
gpr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.nanmedian(gpr_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.nanmedian(gpr_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.nanmedian(gpr_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.nanmedian(gpr_scores['test_r2']))
|
||||
|
||||
# %%
|
Loading…
Reference in New Issue