Thoroughly refactor regression runner.
parent
47b1ecdbb9
commit
b505fb2b6a
|
@ -13,438 +13,36 @@
|
|||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %matplotlib inline
|
||||
# %%
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import xgboost as xg
|
||||
from machine_learning.helper import prepare_regression_model_input
|
||||
from sklearn import gaussian_process, kernel_ridge, linear_model, svm
|
||||
from sklearn.dummy import DummyRegressor
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||
|
||||
# from IPython.core.interactiveshell import InteractiveShell
|
||||
# InteractiveShell.ast_node_interactivity = "all"
|
||||
from machine_learning.helper import (
|
||||
impute_encode_categorical_features,
|
||||
prepare_cross_validator,
|
||||
prepare_sklearn_data_format,
|
||||
run_all_regression_models,
|
||||
)
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
# %%
|
||||
model_input = pd.read_csv(
|
||||
"../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv"
|
||||
)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
cv_method = "half_logo" # logo, half_logo, 5kfold
|
||||
|
||||
train_x, data_y, data_groups = prepare_regression_model_input(model_input, cv_method)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
train_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
|
||||
# Defaults to 5 k folds in cross_validate method
|
||||
if cv_method != "logo" and cv_method != "half_logo":
|
||||
logo = None
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
sum(data_y.isna())
|
||||
|
||||
# %% [markdown]
|
||||
# ### Baseline: Dummy Regression (mean)
|
||||
dummy_regr = DummyRegressor(strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
dummy_regressor = cross_validate(
|
||||
dummy_regr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(dummy_regressor["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(dummy_regressor["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(dummy_regressor["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(dummy_regressor["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Linear Regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_rapids = linear_model.LinearRegression()
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_scores = cross_validate(
|
||||
lin_reg_rapids,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(lin_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(lin_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(lin_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(lin_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Linear Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_r = xg.XGBRegressor(objective="reg:squarederror", n_estimators=10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_reg_scores = cross_validate(
|
||||
xgb_r,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(xgb_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(xgb_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(xgb_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(xgb_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### XGBRegressor Pseudo Huber Error Regression
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective="reg:pseudohubererror", n_estimators=10)
|
||||
# %% jupyter={"source_hidden": true}
|
||||
imputer = SimpleImputer(missing_values=np.nan, strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
||||
xgb_psuedo_huber_r,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(xgb_psuedo_huber_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(xgb_psuedo_huber_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Ridge regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||
|
||||
# %% tags=[] jupyter={"source_hidden": true}
|
||||
ridge_reg_scores = cross_validate(
|
||||
ridge_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(ridge_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(ridge_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(ridge_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(ridge_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Lasso
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lasso_reg_score = cross_validate(
|
||||
lasso_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(lasso_reg_score["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(lasso_reg_score["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(lasso_reg_score["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(lasso_reg_score["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Bayesian Ridge
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
bayesian_ridge_reg_score = cross_validate(
|
||||
bayesian_ridge_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(bayesian_ridge_reg_score["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(bayesian_ridge_reg_score["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### RANSAC (outlier robust regression)
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ransac_reg = linear_model.RANSACRegressor()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
ransac_reg_scores = cross_validate(
|
||||
ransac_reg,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(ransac_reg_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(ransac_reg_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(ransac_reg_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(ransac_reg_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Support vector regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svr = svm.SVR()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
svr_scores = cross_validate(
|
||||
svr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error", np.median(svr_scores["test_neg_mean_squared_error"])
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(svr_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(svr_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(svr_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Kernel Ridge regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
kridge = kernel_ridge.KernelRidge()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
kridge_scores = cross_validate(
|
||||
kridge,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error",
|
||||
np.median(kridge_scores["test_neg_mean_squared_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(kridge_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(kridge_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(kridge_scores["test_r2"]))
|
||||
|
||||
# %% [markdown]
|
||||
# ### Gaussian Process Regression
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
gpr = gaussian_process.GaussianProcessRegressor()
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
|
||||
gpr_scores = cross_validate(
|
||||
gpr,
|
||||
X=imputer.fit_transform(train_x),
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=(
|
||||
"r2",
|
||||
"neg_mean_squared_error",
|
||||
"neg_mean_absolute_error",
|
||||
"neg_root_mean_squared_error",
|
||||
),
|
||||
)
|
||||
print(
|
||||
"Negative Mean Squared Error", np.median(gpr_scores["test_neg_mean_squared_error"])
|
||||
)
|
||||
print(
|
||||
"Negative Mean Absolute Error",
|
||||
np.median(gpr_scores["test_neg_mean_absolute_error"]),
|
||||
)
|
||||
print(
|
||||
"Negative Root Mean Squared Error",
|
||||
np.median(gpr_scores["test_neg_root_mean_squared_error"]),
|
||||
)
|
||||
print("R2", np.median(gpr_scores["test_r2"]))
|
||||
|
||||
# %%
|
||||
CV_METHOD = "half_logo" # logo, half_logo, 5kfold
|
||||
|
||||
model_input_encoded = impute_encode_categorical_features(model_input)
|
||||
# %%
|
||||
data_x, data_y, data_groups = prepare_sklearn_data_format(
|
||||
model_input_encoded, CV_METHOD
|
||||
)
|
||||
cross_validator = prepare_cross_validator(data_x, data_y, data_groups, CV_METHOD)
|
||||
# %%
|
||||
scores = run_all_regression_models(data_x, data_y, data_groups, cross_validator)
|
||||
|
|
|
@ -11,7 +11,12 @@ from sklearn import (
|
|||
svm,
|
||||
)
|
||||
from sklearn.dummy import DummyClassifier, DummyRegressor
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_validate
|
||||
from sklearn.model_selection import (
|
||||
BaseCrossValidator,
|
||||
LeaveOneGroupOut,
|
||||
StratifiedKFold,
|
||||
cross_validate,
|
||||
)
|
||||
from xgboost import XGBClassifier, XGBRegressor
|
||||
|
||||
|
||||
|
@ -73,7 +78,40 @@ def insert_row(df, row):
|
|||
return pd.concat([df, pd.DataFrame([row], columns=df.columns)], ignore_index=True)
|
||||
|
||||
|
||||
def prepare_sklearn_data_format(model_input, cv_method="logo"):
|
||||
def impute_encode_categorical_features(model_input: pd.DataFrame) -> pd.DataFrame:
|
||||
categorical_feature_col_names = [
|
||||
"gender",
|
||||
"startlanguage",
|
||||
"limesurvey_demand_control_ratio_quartile",
|
||||
]
|
||||
additional_categorical_features = [
|
||||
col
|
||||
for col in model_input.columns
|
||||
if "mostcommonactivity" in col or "homelabel" in col
|
||||
]
|
||||
categorical_feature_col_names += additional_categorical_features
|
||||
|
||||
categorical_features = model_input[categorical_feature_col_names].copy()
|
||||
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(
|
||||
lambda col: col.astype("category")
|
||||
)
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
numerical_features = model_input.drop(categorical_feature_col_names, axis=1)
|
||||
|
||||
model_input = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
return model_input
|
||||
|
||||
|
||||
def prepare_sklearn_data_format(
|
||||
model_input: pd.DataFrame, cv_method: str = "logo"
|
||||
) -> tuple:
|
||||
index_columns = [
|
||||
"local_segment",
|
||||
"local_segment_label",
|
||||
|
@ -107,50 +145,30 @@ def prepare_sklearn_data_format(model_input, cv_method="logo"):
|
|||
return data_x, data_y, data_groups
|
||||
|
||||
|
||||
def prepare_regression_model_input(model_input, cv_method="logo"):
|
||||
data_x, data_y, data_groups = prepare_sklearn_data_format(
|
||||
model_input, cv_method=cv_method
|
||||
)
|
||||
|
||||
categorical_feature_colnames = [
|
||||
"gender",
|
||||
"startlanguage",
|
||||
"limesurvey_demand_control_ratio_quartile",
|
||||
]
|
||||
additional_categorical_features = [
|
||||
col
|
||||
for col in data_x.columns
|
||||
if "mostcommonactivity" in col or "homelabel" in col
|
||||
]
|
||||
categorical_feature_colnames += additional_categorical_features
|
||||
|
||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
||||
|
||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||
# fillna with mode
|
||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||
# one-hot encoding
|
||||
categorical_features = categorical_features.apply(
|
||||
lambda col: col.astype("category")
|
||||
)
|
||||
if not categorical_features.empty:
|
||||
categorical_features = pd.get_dummies(categorical_features)
|
||||
|
||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
||||
|
||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||
|
||||
return train_x, data_y, data_groups
|
||||
|
||||
|
||||
def run_all_regression_models(train_x, data_y, data_groups):
|
||||
# Prepare cross validation
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
train_x,
|
||||
def prepare_cross_validator(
|
||||
data_x: pd.DataFrame,
|
||||
data_y: pd.DataFrame,
|
||||
data_groups: pd.DataFrame,
|
||||
cv_method: str = "logo",
|
||||
) -> BaseCrossValidator:
|
||||
if cv_method == "logo" or cv_method == "half_logo":
|
||||
cv = LeaveOneGroupOut()
|
||||
cv.get_n_splits(
|
||||
data_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
else:
|
||||
cv = StratifiedKFold(n_splits=5, shuffle=True)
|
||||
return cv
|
||||
|
||||
|
||||
def run_all_regression_models(
|
||||
data_x: pd.DataFrame,
|
||||
data_y: pd.DataFrame,
|
||||
data_groups: pd.DataFrame,
|
||||
cross_validator: BaseCrossValidator,
|
||||
) -> pd.DataFrame:
|
||||
metrics = ["r2", "neg_mean_absolute_error", "neg_root_mean_squared_error"]
|
||||
test_metrics = ["test_" + metric for metric in metrics]
|
||||
scores = pd.DataFrame(columns=["method", "max", "nanmedian"])
|
||||
|
@ -159,10 +177,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
dummy_regr = DummyRegressor(strategy="mean")
|
||||
dummy_regr_scores = cross_validate(
|
||||
dummy_regr,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -177,10 +195,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
lin_reg_rapids = linear_model.LinearRegression()
|
||||
lin_reg_scores = cross_validate(
|
||||
lin_reg_rapids,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -195,10 +213,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
ridge_reg = linear_model.Ridge(alpha=0.5)
|
||||
ridge_reg_scores = cross_validate(
|
||||
ridge_reg,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -212,10 +230,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
||||
lasso_reg_score = cross_validate(
|
||||
lasso_reg,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -229,10 +247,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
||||
bayesian_ridge_reg_score = cross_validate(
|
||||
bayesian_ridge_reg,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -246,10 +264,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
ransac_reg = linear_model.RANSACRegressor()
|
||||
ransac_reg_score = cross_validate(
|
||||
ransac_reg,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -263,10 +281,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
svr = svm.SVR()
|
||||
svr_score = cross_validate(
|
||||
svr,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -280,10 +298,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
kridge = kernel_ridge.KernelRidge()
|
||||
kridge_score = cross_validate(
|
||||
kridge,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -297,10 +315,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
gpr = gaussian_process.GaussianProcessRegressor()
|
||||
gpr_score = cross_validate(
|
||||
gpr,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -314,10 +332,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||
rfr_score = cross_validate(
|
||||
rfr,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -331,10 +349,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
xgb = XGBRegressor()
|
||||
xgb_score = cross_validate(
|
||||
xgb,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
@ -348,10 +366,10 @@ def run_all_regression_models(train_x, data_y, data_groups):
|
|||
ada = ensemble.AdaBoostRegressor()
|
||||
ada_score = cross_validate(
|
||||
ada,
|
||||
X=train_x,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
cv=cross_validator,
|
||||
n_jobs=-1,
|
||||
scoring=metrics,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue