Refactor machine_learning/pipeline.py by defining one class by file.
parent
c1bb4ddf0f
commit
b19eebbb92
|
@ -6,7 +6,7 @@
|
||||||
# extension: .py
|
# extension: .py
|
||||||
# format_name: percent
|
# format_name: percent
|
||||||
# format_version: '1.3'
|
# format_version: '1.3'
|
||||||
# jupytext_version: 1.11.4
|
# jupytext_version: 1.12.0
|
||||||
# kernelspec:
|
# kernelspec:
|
||||||
# display_name: straw2analysis
|
# display_name: straw2analysis
|
||||||
# language: python
|
# language: python
|
||||||
|
@ -32,6 +32,9 @@ if nb_dir not in sys.path:
|
||||||
# %%
|
# %%
|
||||||
import participants.query_db
|
import participants.query_db
|
||||||
from features import esm, helper, proximity
|
from features import esm, helper, proximity
|
||||||
|
import machine_learning.features_sensor
|
||||||
|
import machine_learning.labels
|
||||||
|
import machine_learning.model
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# # 1. Get the relevant data
|
# # 1. Get the relevant data
|
||||||
|
@ -166,7 +169,7 @@ with open("../machine_learning/config/minimal_features.yaml", "r") as file:
|
||||||
print(sensor_features_params)
|
print(sensor_features_params)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sensor_features = pipeline.SensorFeatures(**sensor_features_params)
|
sensor_features = machine_learning.features_sensor.SensorFeatures(**sensor_features_params)
|
||||||
sensor_features.data_types
|
sensor_features.data_types
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -188,12 +191,6 @@ sensor_features.get_sensor_data("proximity")
|
||||||
# %%
|
# %%
|
||||||
sensor_features.calculate_features()
|
sensor_features.calculate_features()
|
||||||
|
|
||||||
# %%
|
|
||||||
sensor_features.get_features("proximity", "all")
|
|
||||||
|
|
||||||
# %%
|
|
||||||
sensor_features.get_features("communication", "all")
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
sensor_features.get_features("all", "all")
|
sensor_features.get_features("all", "all")
|
||||||
|
|
||||||
|
@ -202,10 +199,16 @@ with open("../machine_learning/config/minimal_labels.yaml", "r") as file:
|
||||||
labels_params = yaml.safe_load(file)
|
labels_params = yaml.safe_load(file)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
labels = pipeline.Labels(**labels_params)
|
labels = machine_learning.labels.Labels(**labels_params)
|
||||||
labels.participants_usernames = ptcp_2
|
labels.participants_usernames = ptcp_2
|
||||||
labels.questionnaires
|
labels.questionnaires
|
||||||
|
|
||||||
|
# %%
|
||||||
|
all_features = sensor_features.get_features("all", "all")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
all_features.isna().any().any()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
labels.set_labels()
|
labels.set_labels()
|
||||||
|
|
||||||
|
@ -219,7 +222,7 @@ labels.aggregate_labels()
|
||||||
labels.get_aggregated_labels()
|
labels.get_aggregated_labels()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
model_validation = pipeline.ModelValidation(
|
model_validation = machine_learning.model.ModelValidation(
|
||||||
sensor_features.get_features("all", "all"),
|
sensor_features.get_features("all", "all"),
|
||||||
labels.get_aggregated_labels(),
|
labels.get_aggregated_labels(),
|
||||||
group_variable="participant_id",
|
group_variable="participant_id",
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
grouping_variable: [date_lj]
|
grouping_variable: date_lj
|
||||||
labels:
|
labels:
|
||||||
PANAS:
|
PANAS:
|
||||||
- PA
|
- PA
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
grouping_variable: [date_lj]
|
grouping_variable: date_lj
|
||||||
features:
|
features:
|
||||||
proximity:
|
proximity:
|
||||||
all
|
all
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
grouping_variable: [date_lj]
|
grouping_variable: date_lj
|
||||||
labels:
|
labels:
|
||||||
PANAS:
|
PANAS:
|
||||||
- PA
|
- PA
|
||||||
|
|
|
@ -0,0 +1,173 @@
|
||||||
|
import datetime
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Collection
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from pyprojroot import here
|
||||||
|
|
||||||
|
import participants.query_db
|
||||||
|
from features import proximity, helper, communication
|
||||||
|
|
||||||
|
WARNING_PARTICIPANTS_LABEL = (
|
||||||
|
"Before calculating features, please set participants label using self.set_participants_label() "
|
||||||
|
"to be used as a filename prefix when exporting data. "
|
||||||
|
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class SensorFeatures:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
grouping_variable: str,
|
||||||
|
features: dict,
|
||||||
|
participants_usernames: Collection = None,
|
||||||
|
):
|
||||||
|
|
||||||
|
self.grouping_variable_name = grouping_variable
|
||||||
|
self.grouping_variable = [grouping_variable]
|
||||||
|
|
||||||
|
self.data_types = features.keys()
|
||||||
|
|
||||||
|
self.participants_label: str = ""
|
||||||
|
if participants_usernames is None:
|
||||||
|
participants_usernames = participants.query_db.get_usernames(
|
||||||
|
collection_start=datetime.date.fromisoformat("2020-08-01")
|
||||||
|
)
|
||||||
|
self.participants_label = "all"
|
||||||
|
self.participants_usernames = participants_usernames
|
||||||
|
|
||||||
|
self.df_features_all = pd.DataFrame()
|
||||||
|
|
||||||
|
self.df_proximity = pd.DataFrame()
|
||||||
|
self.df_proximity_counts = pd.DataFrame()
|
||||||
|
|
||||||
|
self.df_calls = pd.DataFrame()
|
||||||
|
self.df_sms = pd.DataFrame()
|
||||||
|
self.df_calls_sms = pd.DataFrame()
|
||||||
|
|
||||||
|
self.folder = None
|
||||||
|
self.filename_prefix = ""
|
||||||
|
self.construct_export_path()
|
||||||
|
print("SensorFeatures initialized.")
|
||||||
|
|
||||||
|
def set_sensor_data(self):
|
||||||
|
print("Querying database ...")
|
||||||
|
if "proximity" in self.data_types:
|
||||||
|
self.df_proximity = proximity.get_proximity_data(
|
||||||
|
self.participants_usernames
|
||||||
|
)
|
||||||
|
print("Got proximity data from the DB.")
|
||||||
|
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
|
||||||
|
self.df_proximity = proximity.recode_proximity(self.df_proximity)
|
||||||
|
if "communication" in self.data_types:
|
||||||
|
self.df_calls = communication.get_call_data(self.participants_usernames)
|
||||||
|
self.df_calls = helper.get_date_from_timestamp(self.df_calls)
|
||||||
|
print("Got calls data from the DB.")
|
||||||
|
|
||||||
|
self.df_sms = communication.get_sms_data(self.participants_usernames)
|
||||||
|
self.df_sms = helper.get_date_from_timestamp(self.df_sms)
|
||||||
|
print("Got sms data from the DB.")
|
||||||
|
|
||||||
|
def get_sensor_data(self, data_type) -> pd.DataFrame:
|
||||||
|
if data_type == "proximity":
|
||||||
|
return self.df_proximity
|
||||||
|
elif data_type == "communication":
|
||||||
|
return self.df_calls_sms
|
||||||
|
else:
|
||||||
|
raise KeyError("This data type has not been implemented.")
|
||||||
|
|
||||||
|
def calculate_features(self):
|
||||||
|
print("Calculating features ...")
|
||||||
|
if not self.participants_label:
|
||||||
|
raise ValueError(WARNING_PARTICIPANTS_LABEL)
|
||||||
|
if "proximity" in self.data_types:
|
||||||
|
self.df_proximity_counts = proximity.count_proximity(
|
||||||
|
self.df_proximity, self.grouping_variable
|
||||||
|
)
|
||||||
|
self.df_features_all = safe_outer_merge_on_index(
|
||||||
|
self.df_features_all, self.df_proximity_counts
|
||||||
|
)
|
||||||
|
print("Calculated proximity features.")
|
||||||
|
to_csv_with_settings(
|
||||||
|
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
|
||||||
|
)
|
||||||
|
|
||||||
|
if "communication" in self.data_types:
|
||||||
|
self.df_calls_sms = communication.calls_sms_features(
|
||||||
|
df_calls=self.df_calls,
|
||||||
|
df_sms=self.df_sms,
|
||||||
|
group_by=self.grouping_variable,
|
||||||
|
)
|
||||||
|
self.df_features_all = safe_outer_merge_on_index(
|
||||||
|
self.df_features_all, self.df_calls_sms
|
||||||
|
)
|
||||||
|
print("Calculated communication features.")
|
||||||
|
to_csv_with_settings(
|
||||||
|
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.df_features_all.fillna(
|
||||||
|
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
|
||||||
|
)
|
||||||
|
self.df_features_all.fillna(
|
||||||
|
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_features(self, data_type, feature_names) -> pd.DataFrame:
|
||||||
|
if data_type == "proximity":
|
||||||
|
if feature_names == "all":
|
||||||
|
feature_names = proximity.FEATURES_PROXIMITY
|
||||||
|
return self.df_proximity_counts[feature_names]
|
||||||
|
elif data_type == "communication":
|
||||||
|
if feature_names == "all":
|
||||||
|
feature_names = communication.FEATURES_CALLS_SMS_ALL
|
||||||
|
return self.df_calls_sms[feature_names]
|
||||||
|
elif data_type == "all":
|
||||||
|
return self.df_features_all
|
||||||
|
else:
|
||||||
|
raise KeyError("This data type has not been implemented.")
|
||||||
|
|
||||||
|
def construct_export_path(self):
|
||||||
|
if not self.participants_label:
|
||||||
|
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
|
||||||
|
self.folder = here("machine_learning/intermediate_results/features", warn=True)
|
||||||
|
self.filename_prefix = (
|
||||||
|
self.participants_label + "_" + self.grouping_variable_name
|
||||||
|
)
|
||||||
|
|
||||||
|
def set_participants_label(self, label: str):
|
||||||
|
self.participants_label = label
|
||||||
|
self.construct_export_path()
|
||||||
|
|
||||||
|
|
||||||
|
def safe_outer_merge_on_index(left, right):
|
||||||
|
if left.empty:
|
||||||
|
return right
|
||||||
|
elif right.empty:
|
||||||
|
return left
|
||||||
|
else:
|
||||||
|
return pd.merge(
|
||||||
|
left,
|
||||||
|
right,
|
||||||
|
how="outer",
|
||||||
|
left_index=True,
|
||||||
|
right_index=True,
|
||||||
|
validate="one_to_one",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def to_csv_with_settings(
|
||||||
|
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
|
||||||
|
) -> None:
|
||||||
|
export_filename = filename_prefix + "_" + data_type + ".csv"
|
||||||
|
full_path = folder / export_filename
|
||||||
|
df.to_csv(
|
||||||
|
path_or_buf=full_path,
|
||||||
|
sep=",",
|
||||||
|
na_rep="NA",
|
||||||
|
header=True,
|
||||||
|
index=False,
|
||||||
|
encoding="utf-8",
|
||||||
|
)
|
||||||
|
print("Exported the dataframe to " + str(full_path))
|
|
@ -0,0 +1,86 @@
|
||||||
|
import datetime
|
||||||
|
from typing import Collection
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
import participants.query_db
|
||||||
|
from features import esm
|
||||||
|
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
|
||||||
|
|
||||||
|
|
||||||
|
class Labels:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
grouping_variable: str,
|
||||||
|
labels: dict,
|
||||||
|
participants_usernames: Collection = None,
|
||||||
|
):
|
||||||
|
self.grouping_variable_name = grouping_variable
|
||||||
|
self.grouping_variable = [grouping_variable]
|
||||||
|
|
||||||
|
self.questionnaires = labels.keys()
|
||||||
|
|
||||||
|
if participants_usernames is None:
|
||||||
|
participants_usernames = participants.query_db.get_usernames(
|
||||||
|
collection_start=datetime.date.fromisoformat("2020-08-01")
|
||||||
|
)
|
||||||
|
self.participants_usernames = participants_usernames
|
||||||
|
|
||||||
|
self.df_esm = pd.DataFrame()
|
||||||
|
self.df_esm_preprocessed = pd.DataFrame()
|
||||||
|
self.df_esm_interest = pd.DataFrame()
|
||||||
|
self.df_esm_clean = pd.DataFrame()
|
||||||
|
|
||||||
|
self.df_esm_means = pd.DataFrame()
|
||||||
|
print("Labels initialized.")
|
||||||
|
|
||||||
|
def set_labels(self):
|
||||||
|
print("Querying database ...")
|
||||||
|
self.df_esm = esm.get_esm_data(self.participants_usernames)
|
||||||
|
print("Got ESM data from the DB.")
|
||||||
|
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
|
||||||
|
print("ESM data preprocessed.")
|
||||||
|
if "PANAS" in self.questionnaires:
|
||||||
|
self.df_esm_interest = self.df_esm_preprocessed[
|
||||||
|
(
|
||||||
|
self.df_esm_preprocessed["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
|
||||||
|
)
|
||||||
|
| (
|
||||||
|
self.df_esm_preprocessed["questionnaire_id"]
|
||||||
|
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
|
||||||
|
)
|
||||||
|
]
|
||||||
|
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
|
||||||
|
print("ESM data cleaned.")
|
||||||
|
|
||||||
|
def get_labels(self, questionnaire):
|
||||||
|
if questionnaire == "PANAS":
|
||||||
|
return self.df_esm_clean
|
||||||
|
else:
|
||||||
|
raise KeyError("This questionnaire has not been implemented as a label.")
|
||||||
|
|
||||||
|
def aggregate_labels(self):
|
||||||
|
print("Aggregating labels ...")
|
||||||
|
self.df_esm_means = (
|
||||||
|
self.df_esm_clean.groupby(
|
||||||
|
["participant_id", "questionnaire_id"] + self.grouping_variable
|
||||||
|
)
|
||||||
|
.esm_user_answer_numeric.agg("mean")
|
||||||
|
.reset_index()
|
||||||
|
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
||||||
|
)
|
||||||
|
self.df_esm_means = (
|
||||||
|
self.df_esm_means.pivot(
|
||||||
|
index=["participant_id"] + self.grouping_variable,
|
||||||
|
columns="questionnaire_id",
|
||||||
|
values="esm_numeric_mean",
|
||||||
|
)
|
||||||
|
.reset_index(col_level=1)
|
||||||
|
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
|
||||||
|
.set_index(["participant_id"] + self.grouping_variable)
|
||||||
|
)
|
||||||
|
print("Labels aggregated.")
|
||||||
|
|
||||||
|
def get_aggregated_labels(self):
|
||||||
|
return self.df_esm_means
|
|
@ -0,0 +1,47 @@
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
||||||
|
|
||||||
|
|
||||||
|
class ModelValidation:
|
||||||
|
def __init__(self, X, y, group_variable=None, cv_name="loso"):
|
||||||
|
self.model = None
|
||||||
|
self.cv = None
|
||||||
|
|
||||||
|
idx_common = X.index.intersection(y.index)
|
||||||
|
self.y = y.loc[idx_common, "NA"]
|
||||||
|
# TODO Handle the case of multiple labels.
|
||||||
|
self.X = X.loc[idx_common]
|
||||||
|
self.groups = self.y.index.get_level_values(group_variable)
|
||||||
|
|
||||||
|
self.cv_name = cv_name
|
||||||
|
print("ModelValidation initialized.")
|
||||||
|
|
||||||
|
def set_cv_method(self):
|
||||||
|
if self.cv_name == "loso":
|
||||||
|
self.cv = LeaveOneGroupOut()
|
||||||
|
self.cv.get_n_splits(X=self.X, y=self.y, groups=self.groups)
|
||||||
|
print("Validation method set.")
|
||||||
|
|
||||||
|
def cross_validate(self):
|
||||||
|
print("Running cross validation ...")
|
||||||
|
if self.model is None:
|
||||||
|
raise TypeError(
|
||||||
|
"Please, specify a machine learning model first, by setting the .model attribute. "
|
||||||
|
"E.g. self.model = sklearn.linear_model.LinearRegression()"
|
||||||
|
)
|
||||||
|
if self.cv is None:
|
||||||
|
raise TypeError(
|
||||||
|
"Please, specify a cross validation method first, by using set_cv_method() first."
|
||||||
|
)
|
||||||
|
if self.X.isna().any().any() or self.y.isna().any().any():
|
||||||
|
raise ValueError(
|
||||||
|
"NaNs were found in either X or y. Please, check your data before continuing."
|
||||||
|
)
|
||||||
|
return cross_val_score(
|
||||||
|
estimator=self.model,
|
||||||
|
X=self.X,
|
||||||
|
y=self.y,
|
||||||
|
groups=self.groups,
|
||||||
|
cv=self.cv,
|
||||||
|
n_jobs=-1,
|
||||||
|
scoring="r2",
|
||||||
|
)
|
|
@ -1,305 +1,10 @@
|
||||||
import datetime
|
|
||||||
import warnings
|
|
||||||
from collections.abc import Collection
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import yaml
|
import yaml
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model
|
from sklearn import linear_model
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
||||||
|
|
||||||
import participants.query_db
|
|
||||||
from features import communication, esm, helper, proximity
|
|
||||||
from machine_learning import QUESTIONNAIRE_IDS, QUESTIONNAIRE_IDS_RENAME
|
|
||||||
|
|
||||||
WARNING_PARTICIPANTS_LABEL = (
|
|
||||||
"Before calculating features, please set participants label using self.set_participants_label() "
|
|
||||||
"to be used as a filename prefix when exporting data. "
|
|
||||||
"The filename will be of the form: %participants_label_%grouping_variable_%data_type.csv"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class SensorFeatures:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
grouping_variable: str,
|
|
||||||
features: dict,
|
|
||||||
participants_usernames: Collection = None,
|
|
||||||
):
|
|
||||||
|
|
||||||
self.grouping_variable_name = grouping_variable
|
|
||||||
self.grouping_variable = [grouping_variable]
|
|
||||||
|
|
||||||
self.data_types = features.keys()
|
|
||||||
|
|
||||||
self.participants_label: str = ""
|
|
||||||
if participants_usernames is None:
|
|
||||||
participants_usernames = participants.query_db.get_usernames(
|
|
||||||
collection_start=datetime.date.fromisoformat("2020-08-01")
|
|
||||||
)
|
|
||||||
self.participants_label = "all"
|
|
||||||
self.participants_usernames = participants_usernames
|
|
||||||
|
|
||||||
self.df_features_all = pd.DataFrame()
|
|
||||||
|
|
||||||
self.df_proximity = pd.DataFrame()
|
|
||||||
self.df_proximity_counts = pd.DataFrame()
|
|
||||||
|
|
||||||
self.df_calls = pd.DataFrame()
|
|
||||||
self.df_sms = pd.DataFrame()
|
|
||||||
self.df_calls_sms = pd.DataFrame()
|
|
||||||
|
|
||||||
self.folder = None
|
|
||||||
self.filename_prefix = ""
|
|
||||||
self.construct_export_path()
|
|
||||||
print("SensorFeatures initialized.")
|
|
||||||
|
|
||||||
def set_sensor_data(self):
|
|
||||||
print("Querying database ...")
|
|
||||||
if "proximity" in self.data_types:
|
|
||||||
self.df_proximity = proximity.get_proximity_data(
|
|
||||||
self.participants_usernames
|
|
||||||
)
|
|
||||||
print("Got proximity data from the DB.")
|
|
||||||
self.df_proximity = helper.get_date_from_timestamp(self.df_proximity)
|
|
||||||
self.df_proximity = proximity.recode_proximity(self.df_proximity)
|
|
||||||
if "communication" in self.data_types:
|
|
||||||
self.df_calls = communication.get_call_data(self.participants_usernames)
|
|
||||||
self.df_calls = helper.get_date_from_timestamp(self.df_calls)
|
|
||||||
print("Got calls data from the DB.")
|
|
||||||
|
|
||||||
self.df_sms = communication.get_sms_data(self.participants_usernames)
|
|
||||||
self.df_sms = helper.get_date_from_timestamp(self.df_sms)
|
|
||||||
print("Got sms data from the DB.")
|
|
||||||
|
|
||||||
def get_sensor_data(self, data_type) -> pd.DataFrame:
|
|
||||||
if data_type == "proximity":
|
|
||||||
return self.df_proximity
|
|
||||||
elif data_type == "communication":
|
|
||||||
return self.df_calls_sms
|
|
||||||
else:
|
|
||||||
raise KeyError("This data type has not been implemented.")
|
|
||||||
|
|
||||||
def calculate_features(self):
|
|
||||||
print("Calculating features ...")
|
|
||||||
if not self.participants_label:
|
|
||||||
raise ValueError(WARNING_PARTICIPANTS_LABEL)
|
|
||||||
if "proximity" in self.data_types:
|
|
||||||
self.df_proximity_counts = proximity.count_proximity(
|
|
||||||
self.df_proximity, self.grouping_variable
|
|
||||||
)
|
|
||||||
self.df_features_all = safe_outer_merge_on_index(
|
|
||||||
self.df_features_all, self.df_proximity_counts
|
|
||||||
)
|
|
||||||
print("Calculated proximity features.")
|
|
||||||
to_csv_with_settings(
|
|
||||||
self.df_proximity, self.folder, self.filename_prefix, data_type="prox"
|
|
||||||
)
|
|
||||||
|
|
||||||
if "communication" in self.data_types:
|
|
||||||
self.df_calls_sms = communication.calls_sms_features(
|
|
||||||
df_calls=self.df_calls,
|
|
||||||
df_sms=self.df_sms,
|
|
||||||
group_by=self.grouping_variable,
|
|
||||||
)
|
|
||||||
self.df_features_all = safe_outer_merge_on_index(
|
|
||||||
self.df_features_all, self.df_calls_sms
|
|
||||||
)
|
|
||||||
print("Calculated communication features.")
|
|
||||||
to_csv_with_settings(
|
|
||||||
self.df_calls_sms, self.folder, self.filename_prefix, data_type="comm"
|
|
||||||
)
|
|
||||||
|
|
||||||
self.df_features_all.fillna(
|
|
||||||
value=proximity.FILL_NA_PROXIMITY, inplace=True, downcast="infer",
|
|
||||||
)
|
|
||||||
self.df_features_all.fillna(
|
|
||||||
value=communication.FILL_NA_CALLS_SMS_ALL, inplace=True, downcast="infer",
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_features(self, data_type, feature_names) -> pd.DataFrame:
|
|
||||||
if data_type == "proximity":
|
|
||||||
if feature_names == "all":
|
|
||||||
feature_names = proximity.FEATURES_PROXIMITY
|
|
||||||
return self.df_proximity_counts[feature_names]
|
|
||||||
elif data_type == "communication":
|
|
||||||
if feature_names == "all":
|
|
||||||
feature_names = communication.FEATURES_CALLS_SMS_ALL
|
|
||||||
return self.df_calls_sms[feature_names]
|
|
||||||
elif data_type == "all":
|
|
||||||
return self.df_features_all
|
|
||||||
else:
|
|
||||||
raise KeyError("This data type has not been implemented.")
|
|
||||||
|
|
||||||
def construct_export_path(self):
|
|
||||||
if not self.participants_label:
|
|
||||||
warnings.warn(WARNING_PARTICIPANTS_LABEL, UserWarning)
|
|
||||||
self.folder = here("machine_learning/intermediate_results/features", warn=True)
|
|
||||||
self.filename_prefix = (
|
|
||||||
self.participants_label + "_" + self.grouping_variable_name
|
|
||||||
)
|
|
||||||
|
|
||||||
def set_participants_label(self, label: str):
|
|
||||||
self.participants_label = label
|
|
||||||
self.construct_export_path()
|
|
||||||
|
|
||||||
|
|
||||||
class Labels:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
grouping_variable: list,
|
|
||||||
labels: dict,
|
|
||||||
participants_usernames: Collection = None,
|
|
||||||
):
|
|
||||||
self.grouping_variable = grouping_variable
|
|
||||||
|
|
||||||
self.questionnaires = labels.keys()
|
|
||||||
|
|
||||||
if participants_usernames is None:
|
|
||||||
participants_usernames = participants.query_db.get_usernames(
|
|
||||||
collection_start=datetime.date.fromisoformat("2020-08-01")
|
|
||||||
)
|
|
||||||
self.participants_usernames = participants_usernames
|
|
||||||
|
|
||||||
self.df_esm = pd.DataFrame()
|
|
||||||
self.df_esm_preprocessed = pd.DataFrame()
|
|
||||||
self.df_esm_interest = pd.DataFrame()
|
|
||||||
self.df_esm_clean = pd.DataFrame()
|
|
||||||
|
|
||||||
self.df_esm_means = pd.DataFrame()
|
|
||||||
print("Labels initialized.")
|
|
||||||
|
|
||||||
def set_labels(self):
|
|
||||||
print("Querying database ...")
|
|
||||||
self.df_esm = esm.get_esm_data(self.participants_usernames)
|
|
||||||
print("Got ESM data from the DB.")
|
|
||||||
self.df_esm_preprocessed = esm.preprocess_esm(self.df_esm)
|
|
||||||
print("ESM data preprocessed.")
|
|
||||||
if "PANAS" in self.questionnaires:
|
|
||||||
self.df_esm_interest = self.df_esm_preprocessed[
|
|
||||||
(
|
|
||||||
self.df_esm_preprocessed["questionnaire_id"]
|
|
||||||
== QUESTIONNAIRE_IDS.get("PANAS").get("PA")
|
|
||||||
)
|
|
||||||
| (
|
|
||||||
self.df_esm_preprocessed["questionnaire_id"]
|
|
||||||
== QUESTIONNAIRE_IDS.get("PANAS").get("NA")
|
|
||||||
)
|
|
||||||
]
|
|
||||||
self.df_esm_clean = esm.clean_up_esm(self.df_esm_interest)
|
|
||||||
print("ESM data cleaned.")
|
|
||||||
|
|
||||||
def get_labels(self, questionnaire):
|
|
||||||
if questionnaire == "PANAS":
|
|
||||||
return self.df_esm_clean
|
|
||||||
else:
|
|
||||||
raise KeyError("This questionnaire has not been implemented as a label.")
|
|
||||||
|
|
||||||
def aggregate_labels(self):
|
|
||||||
print("Aggregating labels ...")
|
|
||||||
self.df_esm_means = (
|
|
||||||
self.df_esm_clean.groupby(
|
|
||||||
["participant_id", "questionnaire_id"] + self.grouping_variable
|
|
||||||
)
|
|
||||||
.esm_user_answer_numeric.agg("mean")
|
|
||||||
.reset_index()
|
|
||||||
.rename(columns={"esm_user_answer_numeric": "esm_numeric_mean"})
|
|
||||||
)
|
|
||||||
self.df_esm_means = (
|
|
||||||
self.df_esm_means.pivot(
|
|
||||||
index=["participant_id"] + self.grouping_variable,
|
|
||||||
columns="questionnaire_id",
|
|
||||||
values="esm_numeric_mean",
|
|
||||||
)
|
|
||||||
.reset_index(col_level=1)
|
|
||||||
.rename(columns=QUESTIONNAIRE_IDS_RENAME)
|
|
||||||
.set_index(["participant_id"] + self.grouping_variable)
|
|
||||||
)
|
|
||||||
print("Labels aggregated.")
|
|
||||||
|
|
||||||
def get_aggregated_labels(self):
|
|
||||||
return self.df_esm_means
|
|
||||||
|
|
||||||
|
|
||||||
class ModelValidation:
|
|
||||||
def __init__(self, X, y, group_variable=None, cv_name="loso"):
|
|
||||||
self.model = None
|
|
||||||
self.cv = None
|
|
||||||
|
|
||||||
idx_common = X.index.intersection(y.index)
|
|
||||||
self.y = y.loc[idx_common, "NA"]
|
|
||||||
# TODO Handle the case of multiple labels.
|
|
||||||
self.X = X.loc[idx_common]
|
|
||||||
self.groups = self.y.index.get_level_values(group_variable)
|
|
||||||
|
|
||||||
self.cv_name = cv_name
|
|
||||||
print("ModelValidation initialized.")
|
|
||||||
|
|
||||||
def set_cv_method(self):
|
|
||||||
if self.cv_name == "loso":
|
|
||||||
self.cv = LeaveOneGroupOut()
|
|
||||||
self.cv.get_n_splits(X=self.X, y=self.y, groups=self.groups)
|
|
||||||
print("Validation method set.")
|
|
||||||
|
|
||||||
def cross_validate(self):
|
|
||||||
print("Running cross validation ...")
|
|
||||||
if self.model is None:
|
|
||||||
raise TypeError(
|
|
||||||
"Please, specify a machine learning model first, by setting the .model attribute. "
|
|
||||||
"E.g. self.model = sklearn.linear_model.LinearRegression()"
|
|
||||||
)
|
|
||||||
if self.cv is None:
|
|
||||||
raise TypeError(
|
|
||||||
"Please, specify a cross validation method first, by using set_cv_method() first."
|
|
||||||
)
|
|
||||||
if self.X.isna().any().any() or self.y.isna().any().any():
|
|
||||||
raise ValueError(
|
|
||||||
"NaNs were found in either X or y. Please, check your data before continuing."
|
|
||||||
)
|
|
||||||
return cross_val_score(
|
|
||||||
estimator=self.model,
|
|
||||||
X=self.X,
|
|
||||||
y=self.y,
|
|
||||||
groups=self.groups,
|
|
||||||
cv=self.cv,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def safe_outer_merge_on_index(left, right):
|
|
||||||
if left.empty:
|
|
||||||
return right
|
|
||||||
elif right.empty:
|
|
||||||
return left
|
|
||||||
else:
|
|
||||||
return pd.merge(
|
|
||||||
left,
|
|
||||||
right,
|
|
||||||
how="outer",
|
|
||||||
left_index=True,
|
|
||||||
right_index=True,
|
|
||||||
validate="one_to_one",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def to_csv_with_settings(
|
|
||||||
df: pd.DataFrame, folder: Path, filename_prefix: str, data_type: str
|
|
||||||
) -> None:
|
|
||||||
export_filename = filename_prefix + "_" + data_type + ".csv"
|
|
||||||
full_path = folder / export_filename
|
|
||||||
df.to_csv(
|
|
||||||
path_or_buf=full_path,
|
|
||||||
sep=",",
|
|
||||||
na_rep="NA",
|
|
||||||
header=True,
|
|
||||||
index=False,
|
|
||||||
encoding="utf-8",
|
|
||||||
)
|
|
||||||
print("Exported the dataframe to " + str(full_path))
|
|
||||||
|
|
||||||
|
from machine_learning.features_sensor import SensorFeatures
|
||||||
|
from machine_learning.labels import Labels
|
||||||
|
from machine_learning.model import ModelValidation
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:
|
with open("./config/prox_comm_PANAS_features.yaml", "r") as file:
|
||||||
|
|
Loading…
Reference in New Issue