Present results.
parent
389198b17f
commit
ae2d7a038d
|
@ -0,0 +1,138 @@
|
|||
# %%
|
||||
import datetime
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import yaml
|
||||
from pyprojroot import here
|
||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process, ensemble
|
||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate, cross_val_predict
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.dummy import DummyRegressor
|
||||
from sklearn.decomposition import PCA
|
||||
import xgboost as xg
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
InteractiveShell.ast_node_interactivity = "all"
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
|
||||
import machine_learning.helper
|
||||
|
||||
# %%
|
||||
csv_name = "./data/daily_18_hours_all_targets/input_JCQ_job_demand_mean.csv"
|
||||
|
||||
# %%
|
||||
data_x, data_y, data_groups = machine_learning.helper.prepare_model_input(csv_name)
|
||||
|
||||
# %%
|
||||
data_y.head()
|
||||
|
||||
# %%
|
||||
scores = machine_learning.helper.run_all_models(csv_name)
|
||||
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
logo = LeaveOneGroupOut()
|
||||
logo.get_n_splits(
|
||||
data_x,
|
||||
data_y,
|
||||
groups=data_groups,
|
||||
)
|
||||
|
||||
# %% [markdown]
|
||||
# ### Baseline: Dummy Regression (mean)
|
||||
dummy_regr = DummyRegressor(strategy="mean")
|
||||
|
||||
# %% jupyter={"source_hidden": true}
|
||||
lin_reg_scores = cross_validate(
|
||||
dummy_regr,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
||||
|
||||
# %%
|
||||
rfr = ensemble.RandomForestRegressor(max_features=0.3, n_jobs=-1)
|
||||
rfr_score = cross_validate(
|
||||
rfr,
|
||||
X=data_x,
|
||||
y=data_y,
|
||||
groups=data_groups,
|
||||
cv=logo,
|
||||
n_jobs=-1,
|
||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||
)
|
||||
print("Negative Mean Squared Error", np.median(rfr_score['test_neg_mean_squared_error']))
|
||||
print("Negative Mean Absolute Error", np.median(rfr_score['test_neg_mean_absolute_error']))
|
||||
print("Negative Root Mean Squared Error", np.median(rfr_score['test_neg_root_mean_squared_error']))
|
||||
print("R2", np.median(rfr_score['test_r2']))
|
||||
|
||||
# %%
|
||||
y_predicted = cross_val_predict(rfr, data_x, data_y, groups=data_groups, cv=logo)
|
||||
|
||||
# %%
|
||||
g1 = sns.relplot(data=data_y, x="y_true", y="y_predicted")
|
||||
#g1.set_axis_labels("true", "predicted")
|
||||
g1.set(title="Negative affect, Random Forest")
|
||||
display(g1)
|
||||
g1.savefig("d18NArfr_relplot.pdf")
|
||||
|
||||
# %%
|
||||
data_y = pd.DataFrame(pd.concat([data_y, data_groups], axis=1))
|
||||
data_y.rename(columns={"target": "y_true"}, inplace=True)
|
||||
data_y["y_predicted"] = y_predicted
|
||||
|
||||
# %%
|
||||
data_y.head()
|
||||
|
||||
|
||||
# %%
|
||||
data_y_long = pd.wide_to_long(
|
||||
data_y.reset_index(),
|
||||
i=["local_segment", "pid"],
|
||||
j="value",
|
||||
stubnames="y",
|
||||
sep="_",
|
||||
suffix=".+",
|
||||
)
|
||||
|
||||
# %%
|
||||
data_y_long.head()
|
||||
# %%
|
||||
g2 = sns.displot(data_y_long, x="y", hue="value", binwidth=0.1, height=5, aspect=1.5)
|
||||
sns.move_legend(g2, "upper left", bbox_to_anchor=(.55, .45))
|
||||
g2.set(title="Negative affect, Random Forest")
|
||||
g2.savefig("d18NArfr_hist.pdf")
|
||||
|
||||
# %%
|
||||
pca = PCA(n_components=2)
|
||||
pca.fit(data_x)
|
||||
print(pca.explained_variance_ratio_)
|
||||
|
||||
# %%
|
||||
data_x_pca = pca.fit_transform(data_x)
|
||||
data_pca = pd.DataFrame(pd.concat([data_y.reset_index()["y_true"], pd.DataFrame(data_x_pca, columns = {"pca_0", "pca_1"})], axis=1))
|
||||
|
||||
# %%
|
||||
data_pca
|
||||
# %%
|
||||
|
||||
g3 = sns.relplot(data = data_pca, x = "pca_0", y = "pca_1", hue = "y_true", palette = sns.color_palette("Spectral", as_cmap=True))
|
||||
g3.savefig("d18NArfr_PCA.pdf")
|
||||
|
||||
# %%
|
Loading…
Reference in New Issue