Combine different segment scripts and set ml pipeline as a regression problem.
parent
8defb271c9
commit
ae0f54ecc2
|
@ -1,284 +0,0 @@
|
||||||
# ---
|
|
||||||
# jupyter:
|
|
||||||
# jupytext:
|
|
||||||
# formats: ipynb,py:percent
|
|
||||||
# text_representation:
|
|
||||||
# extension: .py
|
|
||||||
# format_name: percent
|
|
||||||
# format_version: '1.3'
|
|
||||||
# jupytext_version: 1.13.0
|
|
||||||
# kernelspec:
|
|
||||||
# display_name: straw2analysis
|
|
||||||
# language: python
|
|
||||||
# name: straw2analysis
|
|
||||||
# ---
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# %matplotlib inline
|
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
|
||||||
import machine_learning.labels
|
|
||||||
import machine_learning.model
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# model_input = pd.read_csv("../data/input_PANAS_NA.csv") # Nestandardizirani podatki - pred temeljitim čiščenjem
|
|
||||||
model_input = pd.read_csv("../data/z_input_PANAS_NA.csv") # Standardizirani podatki - pred temeljitim čiščenjem
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs before dropping cols and rows
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
nan_cols = list(model_input.loc[:, model_input.isna().all()].columns)
|
|
||||||
nan_cols
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
model_input.dropna(axis=1, how="all", inplace=True)
|
|
||||||
model_input.dropna(axis=0, how="any", subset=["target"], inplace=True)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### NaNs after dropping NaN cols and rows where target is NaN
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sns.set(rc={"figure.figsize":(16, 8)})
|
|
||||||
sns.heatmap(model_input.sort_values('pid').set_index('pid').isna(), cbar=False)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
cv_method = '5kfold'
|
|
||||||
if cv_method == 'half_logo':
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
else:
|
|
||||||
model_input['pid_index'] = model_input.groupby('pid').cumcount()
|
|
||||||
model_input['pid_count'] = model_input.groupby('pid')['pid'].transform('count')
|
|
||||||
|
|
||||||
model_input["pid_index"] = (model_input['pid_index'] / model_input['pid_count'] + 1).round()
|
|
||||||
model_input["pid_half"] = model_input["pid"] + "_" + model_input["pid_index"].astype(int).astype(str)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid", "pid_index", "pid_half"], axis=1), model_input["target"], model_input["pid_half"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Defaults to 5 k folds in cross_validate method
|
|
||||||
if cv_method != 'logo' and cv_method != 'half_logo':
|
|
||||||
logo = None
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sum(data_y.isna())
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Linear Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_val_score(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring='r2'
|
|
||||||
)
|
|
||||||
lin_reg_scores
|
|
||||||
np.median(lin_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
|
||||||
ridge_reg_scores = cross_val_score(
|
|
||||||
ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(ridge_reg_scores)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Lasso
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg_score = cross_val_score(
|
|
||||||
lasso_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(lasso_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Bayesian Ridge
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg_score = cross_val_score(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
np.median(bayesian_ridge_reg_score)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### RANSAC (outlier robust regression)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
ransac_reg,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Support vector regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr = svm.SVR()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
svr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Kernel Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
kridge,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Gaussian Process Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
|
|
||||||
np.median(
|
|
||||||
cross_val_score(
|
|
||||||
gpr,
|
|
||||||
X=imputer.fit_transform(train_x),
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring="r2"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# %%
|
|
|
@ -1,332 +0,0 @@
|
||||||
# ---
|
|
||||||
# jupyter:
|
|
||||||
# jupytext:
|
|
||||||
# formats: ipynb,py:percent
|
|
||||||
# text_representation:
|
|
||||||
# extension: .py
|
|
||||||
# format_name: percent
|
|
||||||
# format_version: '1.3'
|
|
||||||
# jupytext_version: 1.13.0
|
|
||||||
# kernelspec:
|
|
||||||
# display_name: straw2analysis
|
|
||||||
# language: python
|
|
||||||
# name: straw2analysis
|
|
||||||
# ---
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# %matplotlib inline
|
|
||||||
import datetime
|
|
||||||
import importlib
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
import yaml
|
|
||||||
from pyprojroot import here
|
|
||||||
from sklearn import linear_model, svm, kernel_ridge, gaussian_process
|
|
||||||
from sklearn.model_selection import LeaveOneGroupOut, cross_val_score, cross_validate
|
|
||||||
from sklearn.metrics import mean_squared_error, r2_score
|
|
||||||
from sklearn.impute import SimpleImputer
|
|
||||||
from sklearn.dummy import DummyRegressor
|
|
||||||
import xgboost as xg
|
|
||||||
from IPython.core.interactiveshell import InteractiveShell
|
|
||||||
InteractiveShell.ast_node_interactivity = "all"
|
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
|
||||||
if nb_dir not in sys.path:
|
|
||||||
sys.path.append(nb_dir)
|
|
||||||
|
|
||||||
import machine_learning.features_sensor
|
|
||||||
import machine_learning.labels
|
|
||||||
import machine_learning.model
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# # RAPIDS models
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ## PANAS negative affect
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
model_input = pd.read_csv("../data/daily_18_hours_all_targets/input_PANAS_negative_affect_mean.csv")
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
|
||||||
#if "pid" in model_input.columns:
|
|
||||||
# index_columns.append("pid")
|
|
||||||
model_input.set_index(index_columns, inplace=True)
|
|
||||||
|
|
||||||
data_x, data_y, data_groups = model_input.drop(["target", "pid"], axis=1), model_input["target"], model_input["pid"]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_feature_colnames = ["gender", "startlanguage"]
|
|
||||||
additional_categorical_features = [col for col in data_x.columns if "mostcommonactivity" in col or "homelabel" in col]
|
|
||||||
categorical_feature_colnames += additional_categorical_features
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
categorical_features = data_x[categorical_feature_colnames].copy()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
mode_categorical_features = categorical_features.mode().iloc[0]
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# fillna with mode
|
|
||||||
categorical_features = categorical_features.fillna(mode_categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
# one-hot encoding
|
|
||||||
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
|
||||||
if not categorical_features.empty:
|
|
||||||
categorical_features = pd.get_dummies(categorical_features)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
numerical_features = data_x.drop(categorical_feature_colnames, axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
train_x.dtypes
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
logo.get_n_splits(
|
|
||||||
train_x,
|
|
||||||
data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
sum(data_y.isna())
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Baseline: Dummy Regression (mean)
|
|
||||||
dummy_regr = DummyRegressor(strategy="mean")
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_validate(
|
|
||||||
dummy_regr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Linear Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_rapids = linear_model.LinearRegression()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lin_reg_scores = cross_validate(
|
|
||||||
lin_reg_rapids,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### XGBRegressor Linear Regression
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_r = xg.XGBRegressor(objective ='reg:squarederror', n_estimators = 10)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_reg_scores = cross_validate(
|
|
||||||
xgb_r,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(xgb_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(xgb_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### XGBRegressor Pseudo Huber Error Regression
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_psuedo_huber_r = xg.XGBRegressor(objective ='reg:pseudohubererror', n_estimators = 10)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
xgb_psuedo_huber_reg_scores = cross_validate(
|
|
||||||
xgb_psuedo_huber_r,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(xgb_psuedo_huber_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(xgb_psuedo_huber_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ridge_reg = linear_model.Ridge(alpha=.5)
|
|
||||||
|
|
||||||
# %% tags=[] jupyter={"source_hidden": true}
|
|
||||||
ridge_reg_scores = cross_validate(
|
|
||||||
ridge_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(ridge_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(ridge_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(ridge_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(ridge_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Lasso
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg = linear_model.Lasso(alpha=0.1)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
lasso_reg_score = cross_validate(
|
|
||||||
lasso_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(lasso_reg_score['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(lasso_reg_score['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(lasso_reg_score['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(lasso_reg_score['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Bayesian Ridge
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg = linear_model.BayesianRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
bayesian_ridge_reg_score = cross_validate(
|
|
||||||
bayesian_ridge_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(bayesian_ridge_reg_score['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(bayesian_ridge_reg_score['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(bayesian_ridge_reg_score['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### RANSAC (outlier robust regression)
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg = linear_model.RANSACRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
ransac_reg_scores = cross_validate(
|
|
||||||
ransac_reg,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(ransac_reg_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(ransac_reg_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(ransac_reg_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(ransac_reg_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Support vector regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr = svm.SVR()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
svr_scores = cross_validate(
|
|
||||||
svr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(svr_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(svr_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(svr_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(svr_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Kernel Ridge regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge = kernel_ridge.KernelRidge()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
kridge_scores = cross_validate(
|
|
||||||
kridge,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(kridge_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(kridge_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(kridge_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(kridge_scores['test_r2']))
|
|
||||||
|
|
||||||
# %% [markdown]
|
|
||||||
# ### Gaussian Process Regression
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
gpr = gaussian_process.GaussianProcessRegressor()
|
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
|
||||||
|
|
||||||
gpr_scores = cross_validate(
|
|
||||||
gpr,
|
|
||||||
X=train_x,
|
|
||||||
y=data_y,
|
|
||||||
groups=data_groups,
|
|
||||||
cv=logo,
|
|
||||||
n_jobs=-1,
|
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
|
||||||
)
|
|
||||||
print("Negative Mean Squared Error", np.median(gpr_scores['test_neg_mean_squared_error']))
|
|
||||||
print("Negative Mean Absolute Error", np.median(gpr_scores['test_neg_mean_absolute_error']))
|
|
||||||
print("Negative Root Mean Squared Error", np.median(gpr_scores['test_neg_root_mean_squared_error']))
|
|
||||||
print("R2", np.median(gpr_scores['test_r2']))
|
|
||||||
|
|
||||||
# %%
|
|
|
@ -123,7 +123,7 @@ dummy_regr = DummyRegressor(strategy="mean")
|
||||||
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
lin_reg_scores = cross_validate(
|
dummy_regressor = cross_validate(
|
||||||
dummy_regr,
|
dummy_regr,
|
||||||
X=imputer.fit_transform(train_x),
|
X=imputer.fit_transform(train_x),
|
||||||
y=data_y,
|
y=data_y,
|
||||||
|
@ -132,10 +132,10 @@ lin_reg_scores = cross_validate(
|
||||||
n_jobs=-1,
|
n_jobs=-1,
|
||||||
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
scoring=('r2', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error')
|
||||||
)
|
)
|
||||||
print("Negative Mean Squared Error", np.median(lin_reg_scores['test_neg_mean_squared_error']))
|
print("Negative Mean Squared Error", np.median(dummy_regressor['test_neg_mean_squared_error']))
|
||||||
print("Negative Mean Absolute Error", np.median(lin_reg_scores['test_neg_mean_absolute_error']))
|
print("Negative Mean Absolute Error", np.median(dummy_regressor['test_neg_mean_absolute_error']))
|
||||||
print("Negative Root Mean Squared Error", np.median(lin_reg_scores['test_neg_root_mean_squared_error']))
|
print("Negative Root Mean Squared Error", np.median(dummy_regressor['test_neg_root_mean_squared_error']))
|
||||||
print("R2", np.median(lin_reg_scores['test_r2']))
|
print("R2", np.median(dummy_regressor['test_r2']))
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# ### Linear Regression
|
# ### Linear Regression
|
Loading…
Reference in New Issue