Read in data.

master
junos 2023-07-03 18:44:45 +02:00
parent e3be17e56e
commit 91a9f20839
1 changed files with 40 additions and 13 deletions

View File

@ -1,22 +1,49 @@
--- ---
title: "R Notebook" title: "Reliability of SAM threat and challenge and COPE"
output: html_notebook output: html_notebook
--- ---
The [R plugin](https://www.jetbrains.com/help/pycharm/r-plugin-support.html) for IntelliJ-based IDEs provides
handy capabilities to work with the [R Markdown](https://www.jetbrains.com/help/pycharm/r-markdown.html) files.
To [add](https://www.jetbrains.com/help/pycharm/r-markdown.html#add-code-chunk) a new R chunk,
position the caret at any line or the code chunk, then click "+".
The code chunk appears: ```{r libraries, message=FALSE, warning=FALSE, include=FALSE, cache=FALSE}
```{r} library(conflicted)
library(here)
library(tidyverse)
library(magrittr)
library(kableExtra)
conflicts_prefer(
readr::col_factor,
purrr::discard,
dplyr::filter,
dplyr::lag,
purrr::set_names,
tidyr::extract,
kableExtra::group_rows
)
``` ```
Type any R code in the chunk, for example: ```{r style, include=FALSE, cache=FALSE}
```{r} styler::style_file(
mycars <- within(mtcars, { cyl <- ordered(cyl) }) here("statistical_analysis", "scale_reliability.Rmd"),
mycars scope = "tokens",
indent_by = 4L
)
``` ```
Now, click the **Run** button on the chunk toolbar to [execute](https://www.jetbrains.com/help/pycharm/r-markdown.html#run-r-code) the chunk code. The result should be placed under the chunk.
Click the **Knit and Open Document** to build and preview an output. ```{r read_data}
COL_TYPES <- cols(
.default = col_double(),
participant_id = col_factor(),
username = col_factor(),
device_id = col_factor(),
esm_trigger = col_factor(),
double_esm_user_answer_timestamp = col_double(),
datetime_lj = col_datetime(format = ""),
date_lj = col_date(format = ""),
time = col_factor(),
esm_user_answer = col_factor()
)
df_SAM <- read_csv(here("data", "raw", "df_esm_SAM_threat_challenge.csv"), col_types = COL_TYPES)
df_COPE <- read_csv(here("data", "raw", "df_esm_COPE.csv"), col_types = COL_TYPES)
```