Add preprocessing class.
parent
ef12f64fe5
commit
8f6cb3f444
|
@ -0,0 +1,86 @@
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from sklearn.model_selection import LeaveOneGroupOut, StratifiedKFold
|
||||||
|
|
||||||
|
class Preprocessing:
|
||||||
|
"""This class presents Preprocessing methods which can be used in context of an individual CV iteration or, simply, on whole data.
|
||||||
|
It's blind to the test data - e.g, it imputes the test data with train data mean.
|
||||||
|
This means, it somehow needs an access to the information about data split. In context
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, train_X, train_y, test_X, test_y):
|
||||||
|
self.train_X = train_X
|
||||||
|
self.train_y = train_y
|
||||||
|
self.test_X = test_X
|
||||||
|
self.test_y = test_y
|
||||||
|
|
||||||
|
# TODO This is probably NOT in the right place in this class ...
|
||||||
|
def prepare_data_for_cross_validation(self):
|
||||||
|
data = self.data.copy()
|
||||||
|
|
||||||
|
if self.cv_method == "logo":
|
||||||
|
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
|
||||||
|
|
||||||
|
elif self.cv_method == "half_logo":
|
||||||
|
data['pid_index'] = data.groupby('pid').cumcount()
|
||||||
|
data['pid_count'] = data.groupby('pid')['pid'].transform('count')
|
||||||
|
|
||||||
|
data["pid_index"] = (data['pid_index'] / data['pid_count'] + 1).round()
|
||||||
|
data["pid_half"] = data["pid"] + "_" + data["pid_index"].astype(int).astype(str)
|
||||||
|
|
||||||
|
data_X, data_y, data_groups = data.drop(["target", "pid", "pid_index", "pid_half"], axis=1), data["target"], data["pid_half"]
|
||||||
|
|
||||||
|
elif self.cv_method == "5kfold":
|
||||||
|
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
|
||||||
|
|
||||||
|
return data_X, data_y, data_groups
|
||||||
|
|
||||||
|
# TODO This is probably NOT in the right place in this class ...
|
||||||
|
def initialize_cv_method(self, cv_method):
|
||||||
|
self.cv_method = cv_method
|
||||||
|
self.X, self.y, self.groups = self.prepare_data_for_cross_validation()
|
||||||
|
|
||||||
|
if cv_method in ["logo", "half_logo"]:
|
||||||
|
cv = LeaveOneGroupOut()
|
||||||
|
elif cv_method == "5kfold":
|
||||||
|
cv = StratifiedKFold(n_splits=5, shuffle=True)
|
||||||
|
|
||||||
|
def get_cv_train_test_split():
|
||||||
|
# TODO: for loop nad vsemi možnimi loso spliti? Kako se bo to sem integriralo.
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def one_hot_encode(self, categorical_columns=["gender", "startlanguage", "mostcommonactivity", "homelabel"]):
|
||||||
|
|
||||||
|
categorical_columns = [col for col in self.X.columns if col in categorical_columns]
|
||||||
|
|
||||||
|
categorical_features = self.X[categorical_columns].copy()
|
||||||
|
mode_categorical_features = categorical_features.mode().iloc[0]
|
||||||
|
|
||||||
|
# fillna with mode
|
||||||
|
categorical_features = categorical_features.fillna(mode_categorical_features)
|
||||||
|
|
||||||
|
# one-hot encoding
|
||||||
|
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
|
||||||
|
if not categorical_features.empty:
|
||||||
|
categorical_features = pd.get_dummies(categorical_features)
|
||||||
|
|
||||||
|
numerical_features = self.X.drop(categorical_columns, axis=1)
|
||||||
|
train_x = pd.concat([numerical_features, categorical_features], axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: has to return a train set (or 54 participans in logo) and a test set (1 participant in logo)
|
||||||
|
|
||||||
|
|
||||||
|
def imputer(method="mean"):
|
||||||
|
# TODO: This has to be done in context of CV method - so that test data has only information to mean of train data (it is imputed with train data mean or median etc.)
|
||||||
|
# TODO: has to return train set (or 54 participans in logo) and test test (1 participant in logo)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue