Add preprocessing class.

ml_pipeline
Primoz 2023-02-22 13:44:03 +01:00
parent ef12f64fe5
commit 8f6cb3f444
1 changed files with 86 additions and 0 deletions

View File

@ -0,0 +1,86 @@
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import LeaveOneGroupOut, StratifiedKFold
class Preprocessing:
"""This class presents Preprocessing methods which can be used in context of an individual CV iteration or, simply, on whole data.
It's blind to the test data - e.g, it imputes the test data with train data mean.
This means, it somehow needs an access to the information about data split. In context
"""
def __init__(self, train_X, train_y, test_X, test_y):
self.train_X = train_X
self.train_y = train_y
self.test_X = test_X
self.test_y = test_y
# TODO This is probably NOT in the right place in this class ...
def prepare_data_for_cross_validation(self):
data = self.data.copy()
if self.cv_method == "logo":
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
elif self.cv_method == "half_logo":
data['pid_index'] = data.groupby('pid').cumcount()
data['pid_count'] = data.groupby('pid')['pid'].transform('count')
data["pid_index"] = (data['pid_index'] / data['pid_count'] + 1).round()
data["pid_half"] = data["pid"] + "_" + data["pid_index"].astype(int).astype(str)
data_X, data_y, data_groups = data.drop(["target", "pid", "pid_index", "pid_half"], axis=1), data["target"], data["pid_half"]
elif self.cv_method == "5kfold":
data_X, data_y, data_groups = data.drop(["target", "pid"], axis=1), data["target"], data["pid"]
return data_X, data_y, data_groups
# TODO This is probably NOT in the right place in this class ...
def initialize_cv_method(self, cv_method):
self.cv_method = cv_method
self.X, self.y, self.groups = self.prepare_data_for_cross_validation()
if cv_method in ["logo", "half_logo"]:
cv = LeaveOneGroupOut()
elif cv_method == "5kfold":
cv = StratifiedKFold(n_splits=5, shuffle=True)
def get_cv_train_test_split():
# TODO: for loop nad vsemi možnimi loso spliti? Kako se bo to sem integriralo.
pass
def one_hot_encode(self, categorical_columns=["gender", "startlanguage", "mostcommonactivity", "homelabel"]):
categorical_columns = [col for col in self.X.columns if col in categorical_columns]
categorical_features = self.X[categorical_columns].copy()
mode_categorical_features = categorical_features.mode().iloc[0]
# fillna with mode
categorical_features = categorical_features.fillna(mode_categorical_features)
# one-hot encoding
categorical_features = categorical_features.apply(lambda col: col.astype("category"))
if not categorical_features.empty:
categorical_features = pd.get_dummies(categorical_features)
numerical_features = self.X.drop(categorical_columns, axis=1)
train_x = pd.concat([numerical_features, categorical_features], axis=1)
# TODO: has to return a train set (or 54 participans in logo) and a test set (1 participant in logo)
def imputer(method="mean"):
# TODO: This has to be done in context of CV method - so that test data has only information to mean of train data (it is imputed with train data mean or median etc.)
# TODO: has to return train set (or 54 participans in logo) and test test (1 participant in logo)
pass