diff --git a/presentation/event_stressfulness.py b/presentation/event_stressfulness.py new file mode 100644 index 0000000..1f97c81 --- /dev/null +++ b/presentation/event_stressfulness.py @@ -0,0 +1,59 @@ +# --- +# jupyter: +# jupytext: +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.13.0 +# kernelspec: +# display_name: Python 3.10.8 ('straw2analysis') +# language: python +# name: python3 +# --- + +# %% +# %matplotlib inline +import datetime +import importlib +import os +import sys + +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns +import yaml +from pyprojroot import here +from sklearn import linear_model, svm, kernel_ridge, gaussian_process +from sklearn.model_selection import LeaveOneGroupOut, LeavePGroupsOut, cross_val_score, cross_validate +from sklearn.metrics import mean_squared_error, r2_score +from sklearn.impute import SimpleImputer +from sklearn.dummy import DummyRegressor +import xgboost as xg + +from pathlib import Path + +nb_dir = os.path.split(os.getcwd())[0] +if nb_dir not in sys.path: + sys.path.append(nb_dir) + +import machine_learning.features_sensor +import machine_learning.labels +import machine_learning.model +import machine_learning.helper + + + +# %% tags=["active-ipynb"] +# filename = Path("E:/STRAWresults/inputData/stressfulness_event/input_appraisal_stressfulness_event_mean.csv") + +# %% +final_scores = machine_learning.helper.run_all_regression_models(filename) + +# %% +final_scores.index.name = "metric" +final_scores = final_scores.set_index(["method", final_scores.index]) + +# %% +final_scores.to_csv("event_stressfulness_scores.csv")