Extract method to reuse and simplify.
parent
e3ff4846e1
commit
8c0b66eddc
|
@ -316,3 +316,34 @@ def clean_up_esm(df_esm_preprocessed: pd.DataFrame) -> pd.DataFrame:
|
|||
)
|
||||
)
|
||||
return df_esm_clean
|
||||
|
||||
|
||||
def increment_answers(df_esm_clean: pd.DataFrame, increment_by=1):
|
||||
"""
|
||||
Increment answers to keep in line with original scoring.
|
||||
|
||||
We always used 0 for the lowest value of user answer.
|
||||
Some scales originally used other scoring, such as starting from 1.
|
||||
This restores original scoring so that the values are comparable to references.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_esm_clean: pd.DataFrame
|
||||
A cleaned ESM dataframe, which must also include esm_user_answer_numeric.
|
||||
increment_by:
|
||||
A number to add to the user answer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_esm_clean: pd.DataFrame
|
||||
The same df with addition of a column 'esm_user_answer_numeric'.
|
||||
|
||||
"""
|
||||
try:
|
||||
df_esm_clean = df_esm_clean.assign(
|
||||
esm_user_score=lambda x: x.esm_user_answer_numeric + increment_by
|
||||
)
|
||||
except AttributeError as e:
|
||||
print("Please, clean the dataframe first using features.esm.clean_up_esm.")
|
||||
print(e)
|
||||
return df_esm_clean
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
import pandas as pd
|
||||
|
||||
from features.esm import increment_answers
|
||||
|
||||
COPE_ORIGINAL_MAX = 4
|
||||
COPE_ORIGINAL_MIN = 1
|
||||
|
||||
|
@ -187,15 +189,6 @@ def reassign_question_ids(df_cope_cleaned: pd.DataFrame) -> pd.DataFrame:
|
|||
)
|
||||
|
||||
# Finally, increment numeric answers.
|
||||
try:
|
||||
df_cope_fixed = df_cope_fixed.assign(
|
||||
esm_user_score=lambda x: x.esm_user_answer_numeric + 1
|
||||
)
|
||||
# Increment the original answer by 1
|
||||
# to keep in line with traditional scoring
|
||||
# (from COPE_ORIGINAL_MIN - COPE_ORIGINAL_MAX).
|
||||
except AttributeError as e:
|
||||
print("Please, clean the dataframe first using features.esm.clean_up_esm.")
|
||||
print(e)
|
||||
df_cope_fixed = increment_answers(df_cope_fixed)
|
||||
|
||||
return df_cope_fixed
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
import pandas as pd
|
||||
|
||||
from features.esm import increment_answers
|
||||
|
||||
JCQ_ORIGINAL_MAX = 4
|
||||
JCQ_ORIGINAL_MIN = 1
|
||||
|
||||
|
@ -87,11 +89,9 @@ def reverse_jcq_demand_control_scoring(
|
|||
# In case there is an unexpected answer, raise an exception.
|
||||
|
||||
try:
|
||||
df_esm_jcq_demand_control = df_esm_jcq_demand_control.assign(
|
||||
esm_user_score=lambda x: x.esm_user_answer_numeric + 1
|
||||
)
|
||||
df_esm_jcq_demand_control = increment_answers(df_esm_jcq_demand_control)
|
||||
# Increment the original answer by 1 to keep in line
|
||||
# with traditional scoring (JCQ_ORIGINAL_MIN - JCQ_ORIGINAL_MAX).
|
||||
# with traditional scoring (from JCQ_ORIGINAL_MIN to JCQ_ORIGINAL_MAX).
|
||||
df_esm_jcq_demand_control[
|
||||
df_esm_jcq_demand_control["question_id"].isin(
|
||||
DICT_JCQ_DEMAND_CONTROL_REVERSE.keys()
|
||||
|
|
|
@ -2,6 +2,7 @@ import numpy as np
|
|||
import pandas as pd
|
||||
|
||||
import features.esm
|
||||
from features.esm import increment_answers
|
||||
|
||||
SAM_ORIGINAL_MAX = 5
|
||||
SAM_ORIGINAL_MIN = 1
|
||||
|
@ -506,15 +507,6 @@ def reassign_question_ids(df_sam_cleaned: pd.DataFrame) -> pd.DataFrame:
|
|||
)
|
||||
|
||||
# Finally, increment numeric answers.
|
||||
try:
|
||||
df_sam_fixed = df_sam_fixed.assign(
|
||||
esm_user_score=lambda x: x.esm_user_answer_numeric + 1
|
||||
)
|
||||
# Increment the original answer by 1
|
||||
# to keep in line with traditional scoring
|
||||
# (from SAM_ORIGINAL_MIN - SAM_ORIGINAL_MAX).
|
||||
except AttributeError as e:
|
||||
print("Please, clean the dataframe first using features.esm.clean_up_esm.")
|
||||
print(e)
|
||||
df_sam_fixed = increment_answers(df_sam_fixed)
|
||||
|
||||
return df_sam_fixed
|
||||
|
|
Loading…
Reference in New Issue