Explore JCQ demand and control.
parent
e2808422db
commit
8bf21ab272
|
@ -1,3 +1,4 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
|
@ -24,6 +25,7 @@ if nb_dir not in sys.path:
|
|||
sys.path.append(nb_dir)
|
||||
import participants.query_db
|
||||
from features.esm import *
|
||||
from features.esm_JCQ import *
|
||||
|
||||
# %%
|
||||
participants_inactive_usernames = participants.query_db.get_usernames(
|
||||
|
@ -213,3 +215,53 @@ sns.displot(data=df_esm_SAM_period_summary_participant, x="mean", binwidth=0.2)
|
|||
|
||||
# %%
|
||||
sns.displot(data=df_esm_SAM_period_summary_participant, x="std", binwidth=0.1)
|
||||
|
||||
# %% [markdown]
|
||||
# # Job demand and control
|
||||
|
||||
# %%
|
||||
df_esm_JCQ_demand_control = df_esm_preprocessed[
|
||||
(df_esm_preprocessed["questionnaire_id"] >= 10)
|
||||
& (df_esm_preprocessed["questionnaire_id"] <= 11)
|
||||
]
|
||||
df_esm_JCQ_demand_control_clean = clean_up_esm(df_esm_JCQ_demand_control)
|
||||
|
||||
# %%
|
||||
df_esm_JCQ_demand_control_reversed = reverse_jcq_demand_control_scoring(
|
||||
df_esm_JCQ_demand_control_clean
|
||||
)
|
||||
|
||||
# %%
|
||||
df_esm_JCQ_daily = (
|
||||
df_esm_JCQ_demand_control_reversed.groupby(
|
||||
["participant_id", "date_lj", "questionnaire_id"]
|
||||
)
|
||||
.esm_user_score.agg("mean")
|
||||
.reset_index()
|
||||
.rename(columns={"esm_user_score": "esm_score_mean"})
|
||||
)
|
||||
df_esm_JCQ_summary_participant = (
|
||||
df_esm_JCQ_daily.groupby(["participant_id", "questionnaire_id"])
|
||||
.agg(["mean", "median", "std"])
|
||||
.reset_index(col_level=1)
|
||||
)
|
||||
df_esm_JCQ_summary_participant.columns = df_esm_JCQ_summary_participant.columns.get_level_values(
|
||||
1
|
||||
)
|
||||
df_esm_JCQ_summary_participant[
|
||||
"JCQ_subscale"
|
||||
] = df_esm_JCQ_summary_participant.questionnaire_id.astype(
|
||||
"category"
|
||||
).cat.rename_categories(
|
||||
{10: "job demand", 11: "job control"}
|
||||
)
|
||||
|
||||
# %%
|
||||
sns.displot(
|
||||
data=df_esm_JCQ_summary_participant, x="mean", hue="JCQ_subscale", binwidth=0.1,
|
||||
)
|
||||
|
||||
# %%
|
||||
sns.displot(
|
||||
data=df_esm_JCQ_summary_participant, x="std", hue="JCQ_subscale", binwidth=0.05,
|
||||
)
|
||||
|
|
|
@ -101,7 +101,7 @@ def reverse_jcq_demand_control_scoring(
|
|||
- x.esm_user_score
|
||||
)
|
||||
# Reverse the items that require it.
|
||||
except KeyError as e:
|
||||
except AttributeError as e:
|
||||
print("Please, clean the dataframe first using features.esm.clean_up_esm.")
|
||||
print(e)
|
||||
|
||||
|
|
Loading…
Reference in New Issue