Added testing section after feature selection.
parent
259be708aa
commit
865225994b
|
@ -20,6 +20,9 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
from sklearn.metrics import recall_score, f1_score
|
||||||
|
|
||||||
nb_dir = os.path.split(os.getcwd())[0]
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
if nb_dir not in sys.path:
|
if nb_dir not in sys.path:
|
||||||
sys.path.append(nb_dir)
|
sys.path.append(nb_dir)
|
||||||
|
@ -34,8 +37,8 @@ index_columns = ["local_segment", "local_segment_label", "local_segment_start_da
|
||||||
df.set_index(index_columns, inplace=True)
|
df.set_index(index_columns, inplace=True)
|
||||||
|
|
||||||
# Create binary target
|
# Create binary target
|
||||||
# bins = [-1, 0, 4] # bins for stressfulness (0-4) target
|
bins = [-1, 0, 4] # bins for stressfulness (0-4) target
|
||||||
# df['target'], edges = pd.cut(df.target, bins=bins, labels=[0, 1], retbins=True, right=True) #['low', 'medium', 'high']
|
df['target'], edges = pd.cut(df.target, bins=bins, labels=[0, 1], retbins=True, right=True) #['low', 'medium', 'high']
|
||||||
|
|
||||||
|
|
||||||
nan_cols = df.columns[df.isna().any()].tolist()
|
nan_cols = df.columns[df.isna().any()].tolist()
|
||||||
|
@ -53,20 +56,38 @@ for split in cv.get_splits():
|
||||||
pre.one_hot_encode_train_and_test_sets(categorical_columns)
|
pre.one_hot_encode_train_and_test_sets(categorical_columns)
|
||||||
train_X, train_y, test_X, test_y = pre.get_train_test_sets()
|
train_X, train_y, test_X, test_y = pre.get_train_test_sets()
|
||||||
|
|
||||||
# train_X = train_X[train_X.columns[:30]]
|
|
||||||
|
print(train_X.shape, test_X.shape)
|
||||||
|
# Predict before feature selection
|
||||||
|
rfc = RandomForestClassifier(n_estimators=10)
|
||||||
|
rfc.fit(train_X, train_y)
|
||||||
|
predictions = rfc.predict(test_X)
|
||||||
|
|
||||||
|
print("Recall:", recall_score(test_y, predictions))
|
||||||
|
print("F1:", f1_score(test_y, predictions))
|
||||||
|
|
||||||
# Feature selection on train set
|
# Feature selection on train set
|
||||||
# Morda se implementira GroupKfold namesto stratifiedKFold? >>
|
|
||||||
# >> Tako se bo posamezen pid pojavil ali v test ali v train setu
|
|
||||||
train_groups, test_groups = cv.get_groups_sets(split)
|
train_groups, test_groups = cv.get_groups_sets(split)
|
||||||
|
|
||||||
fs = FeatureSelection(train_X, train_y, train_groups)
|
fs = FeatureSelection(train_X, train_y, train_groups)
|
||||||
selected_features = fs.select_features(n_min=20, n_max=50, k=60,
|
selected_features = fs.select_features(n_min=20, n_max=29, k=40,
|
||||||
ml_type="classification_multi",
|
ml_type="classification_bin",
|
||||||
metric="f1", n_tolerance=20)
|
metric="recall", n_tolerance=20)
|
||||||
|
|
||||||
|
train_X = train_X[selected_features]
|
||||||
|
test_X = test_X[selected_features]
|
||||||
|
|
||||||
print(selected_features)
|
print(selected_features)
|
||||||
print(len(selected_features))
|
print(len(selected_features))
|
||||||
|
|
||||||
|
# Predict after feature selection
|
||||||
|
rfc = RandomForestClassifier(n_estimators=500)
|
||||||
|
rfc.fit(train_X, train_y)
|
||||||
|
predictions = rfc.predict(test_X)
|
||||||
|
|
||||||
|
print("Recall:", recall_score(test_y, predictions))
|
||||||
|
print("F1:", f1_score(test_y, predictions))
|
||||||
|
|
||||||
break
|
break
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
Loading…
Reference in New Issue