Check for NaNs in the data, since sklearn.LinearRegression cannot handle them.
parent
0b85ee8fdc
commit
8507ff5761
|
@ -180,12 +180,15 @@ class ModelValidation:
|
||||||
|
|
||||||
def cross_validate(self):
|
def cross_validate(self):
|
||||||
if self.model is None:
|
if self.model is None:
|
||||||
raise ValueError(
|
raise TypeError(
|
||||||
"Please set self.model first, e.g. self.model = sklearn.linear_model.LinearRegression()"
|
"Please set self.model first, e.g. self.model = sklearn.linear_model.LinearRegression()"
|
||||||
)
|
)
|
||||||
# TODO Is ValueError appropriate here?
|
|
||||||
if self.cv is None:
|
if self.cv is None:
|
||||||
raise ValueError("Please use set_cv_method() first.")
|
raise TypeError("Please use set_cv_method() first.")
|
||||||
|
if self.X.isna().any().any() or self.y.isna().any().any():
|
||||||
|
raise ValueError(
|
||||||
|
"NaNs were found in either X or y. Please, check your data before continuing."
|
||||||
|
)
|
||||||
return cross_val_score(
|
return cross_val_score(
|
||||||
estimator=self.model,
|
estimator=self.model,
|
||||||
X=self.X,
|
X=self.X,
|
||||||
|
|
Loading…
Reference in New Issue