Add TEMP lime_survey cols
parent
183758cd37
commit
7afef5582f
|
@ -51,6 +51,13 @@ import machine_learning.model
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
model_input = pd.read_csv("../data/intradaily_30_min_all_targets/input_JCQ_job_demand_mean.csv")
|
||||||
|
|
||||||
|
lime_cols = [col for col in model_input if col.startswith('limesurvey_demand')]
|
||||||
|
model_input['limesurvey_demand_control_ratio'].describe()
|
||||||
|
lime_cols
|
||||||
|
|
||||||
|
# TODO: prek lime_cols ustvari klastre, ki jih nato kasneje ločeno preveriš z modeli (npr. k=5). Potrebno bo trikrat ponoviti spodnji postopek.
|
||||||
|
# Pomisli, če gre kaj zavizi v for loop (npr. modeli v seznamu)
|
||||||
|
|
||||||
# %% jupyter={"source_hidden": true}
|
# %% jupyter={"source_hidden": true}
|
||||||
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
index_columns = ["local_segment", "local_segment_label", "local_segment_start_datetime", "local_segment_end_datetime"]
|
||||||
model_input.set_index(index_columns, inplace=True)
|
model_input.set_index(index_columns, inplace=True)
|
||||||
|
|
Loading…
Reference in New Issue