diff --git a/exploration/ml_pipeline_classification.py b/exploration/ml_pipeline_classification.py index d1f7287..33d1125 100644 --- a/exploration/ml_pipeline_classification.py +++ b/exploration/ml_pipeline_classification.py @@ -15,15 +15,12 @@ # %% jupyter={"source_hidden": true} # %matplotlib inline -import datetime -import importlib import os import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd -import seaborn as sns from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble from sklearn.model_selection import LeaveOneGroupOut, cross_validate, StratifiedKFold @@ -39,9 +36,6 @@ nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) -import machine_learning.labels -import machine_learning.model - # %% [markdown] # # RAPIDS models diff --git a/exploration/ml_pipeline_classification_with_clustering.py b/exploration/ml_pipeline_classification_with_clustering.py index 4ccea22..04c35aa 100644 --- a/exploration/ml_pipeline_classification_with_clustering.py +++ b/exploration/ml_pipeline_classification_with_clustering.py @@ -15,8 +15,6 @@ # %% jupyter={"source_hidden": true} # %matplotlib inline -import datetime -import importlib import os import sys @@ -29,10 +27,6 @@ from scipy import stats from sklearn.model_selection import LeaveOneGroupOut, cross_validate, StratifiedKFold from sklearn.impute import SimpleImputer -from sklearn.dummy import DummyClassifier -from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble -from lightgbm import LGBMClassifier -import xgboost as xg from sklearn.cluster import KMeans @@ -43,8 +37,6 @@ nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) -import machine_learning.labels -import machine_learning.model from machine_learning.classification_models import ClassificationModels # %% [markdown] diff --git a/exploration/ml_pipeline_classification_with_clustering_2_class.py b/exploration/ml_pipeline_classification_with_clustering_2_class.py index 36468fa..3442733 100644 --- a/exploration/ml_pipeline_classification_with_clustering_2_class.py +++ b/exploration/ml_pipeline_classification_with_clustering_2_class.py @@ -15,26 +15,18 @@ # %% jupyter={"source_hidden": true} # %matplotlib inline -import datetime -import importlib import os import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd -import seaborn as sns from scipy import stats -from sklearn.model_selection import LeaveOneGroupOut, cross_validate, train_test_split +from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score -from sklearn.dummy import DummyClassifier -from sklearn import linear_model, svm, naive_bayes, neighbors, tree, ensemble -from lightgbm import LGBMClassifier -import xgboost as xg - from sklearn.cluster import KMeans from IPython.core.interactiveshell import InteractiveShell @@ -44,8 +36,6 @@ nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) -import machine_learning.labels -import machine_learning.model from machine_learning.classification_models import ClassificationModels # %% [markdown]