Add analysis for composite score of stress.
parent
a9af113c9c
commit
78807b941c
|
@ -0,0 +1,142 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.14.5
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from machine_learning.helper import (
|
||||
impute_encode_categorical_features,
|
||||
prepare_cross_validator,
|
||||
prepare_sklearn_data_format,
|
||||
run_all_classification_models,
|
||||
)
|
||||
|
||||
# %%
|
||||
CV_METHOD = "logo" # logo, half_logo, 5kfold
|
||||
# Cross-validation method (could be regarded as a hyperparameter)
|
||||
print("CV_METHOD: " + CV_METHOD)
|
||||
N_SL = 3 # Number of largest/smallest accuracies (of particular CV) outputs
|
||||
UNDERSAMPLING = False
|
||||
# (bool) If True this will train and test data on balanced dataset
|
||||
# (using undersampling method)
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
PATH_BASE = Path("E:/STRAWresults/20230415")
|
||||
|
||||
SEGMENT_TYPE = "period"
|
||||
print("SEGMENT_TYPE: " + SEGMENT_TYPE)
|
||||
SEGMENT_LENGTH = "30_minutes_before"
|
||||
print("SEGMENT_LENGTH: " + SEGMENT_LENGTH)
|
||||
|
||||
PATH_FULL = PATH_BASE / SEGMENT_LENGTH / "features" / "all_sensor_features.csv"
|
||||
|
||||
model_input = pd.read_csv(PATH_FULL)
|
||||
|
||||
if SEGMENT_LENGTH == "daily":
|
||||
DAY_LENGTH = "daily" # or "working"
|
||||
print(DAY_LENGTH)
|
||||
model_input = model_input[model_input["local_segment"].str.contains(DAY_LENGTH)]
|
||||
|
||||
# %%
|
||||
TARGETS = [
|
||||
"PANAS_negative_affect_mean",
|
||||
"PANAS_positive_affect_mean",
|
||||
"JCQ_job_demand_mean",
|
||||
"JCQ_job_control_mean",
|
||||
"appraisal_stressfulness_period_mean",
|
||||
]
|
||||
|
||||
# %%
|
||||
all_features_cleaned = pd.DataFrame()
|
||||
for target in TARGETS:
|
||||
PATH_FULL = (
|
||||
PATH_BASE
|
||||
/ SEGMENT_LENGTH
|
||||
/ "features"
|
||||
/ ("all_sensor_features_cleaned_straw_py_(" + target + ").csv")
|
||||
)
|
||||
current_features = pd.read_csv(PATH_FULL, index_col="local_segment")
|
||||
if all_features_cleaned.empty:
|
||||
all_features_cleaned = current_features
|
||||
else:
|
||||
all_features_cleaned = all_features_cleaned.join(
|
||||
current_features[("phone_esm_straw_" + target)],
|
||||
how="inner",
|
||||
rsuffix="_" + target,
|
||||
)
|
||||
print(all_features_cleaned.shape)
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
# bins = [-10, 0, 10] # bins for z-scored targets
|
||||
BINS = [-1, 0, 4] # bins for stressfulness (0-4) target
|
||||
print("BINS: ", BINS)
|
||||
model_input["target"], edges = pd.cut(
|
||||
model_input.target, bins=BINS, labels=["low", "high"], retbins=True, right=True
|
||||
) # ['low', 'medium', 'high']
|
||||
print(model_input["target"].value_counts())
|
||||
REMOVE_MEDIUM = True
|
||||
if ("medium" in model_input["target"]) and REMOVE_MEDIUM:
|
||||
model_input = model_input[model_input["target"] != "medium"]
|
||||
model_input["target"] = (
|
||||
model_input["target"].astype(str).apply(lambda x: 0 if x == "low" else 1)
|
||||
)
|
||||
else:
|
||||
model_input["target"] = model_input["target"].map(
|
||||
{"low": 0, "medium": 1, "high": 2}
|
||||
)
|
||||
print(model_input["target"].value_counts())
|
||||
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
# UnderSampling
|
||||
if UNDERSAMPLING:
|
||||
no_stress = model_input[model_input["target"] == 0]
|
||||
stress = model_input[model_input["target"] == 1]
|
||||
|
||||
no_stress = no_stress.sample(n=len(stress))
|
||||
model_input = pd.concat([stress, no_stress], axis=0)
|
||||
|
||||
|
||||
# %% jupyter={"outputs_hidden": false, "source_hidden": false}
|
||||
model_input_encoded = impute_encode_categorical_features(model_input)
|
||||
# %%
|
||||
data_x, data_y, data_groups = prepare_sklearn_data_format(
|
||||
model_input_encoded, CV_METHOD
|
||||
)
|
||||
cross_validator = prepare_cross_validator(data_x, data_y, data_groups, CV_METHOD)
|
||||
|
||||
# %%
|
||||
data_y.head()
|
||||
|
||||
# %%
|
||||
data_y.tail()
|
||||
# %%
|
||||
data_y.shape
|
||||
# %%
|
||||
scores = run_all_classification_models(data_x, data_y, data_groups, cross_validator)
|
||||
# %%
|
||||
PATH_OUTPUT = Path("..") / Path("presentation/results")
|
||||
path_output_full = PATH_OUTPUT / (
|
||||
"composite_"
|
||||
+ SEGMENT_LENGTH
|
||||
+ "_classification"
|
||||
+ str(BINS)
|
||||
+ "_"
|
||||
+ CV_METHOD
|
||||
+ ".csv"
|
||||
)
|
||||
scores.to_csv(path_output_full, index=False)
|
Loading…
Reference in New Issue