Make group_by consistent with communication.
parent
d6337e82ac
commit
72b16af75c
|
@ -16,6 +16,7 @@
|
||||||
# %%
|
# %%
|
||||||
# %matplotlib inline
|
# %matplotlib inline
|
||||||
import datetime
|
import datetime
|
||||||
|
import importlib
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
@ -32,13 +33,16 @@ import participants.query_db
|
||||||
TZ_LJ = timezone("Europe/Ljubljana")
|
TZ_LJ = timezone("Europe/Ljubljana")
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
from features.proximity import *
|
from features import helper, proximity
|
||||||
|
|
||||||
|
# %%
|
||||||
|
importlib.reload(proximity)
|
||||||
|
|
||||||
# %% [markdown]
|
# %% [markdown]
|
||||||
# # Basic characteristics
|
# # Basic characteristics
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_proximity_nokia = get_proximity_data(["nokia_0000003"])
|
df_proximity_nokia = proximity.get_proximity_data(["nokia_0000003"])
|
||||||
print(df_proximity_nokia)
|
print(df_proximity_nokia)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -53,7 +57,7 @@ df_proximity_nokia.double_proximity.value_counts()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
participants_inactive_usernames = participants.query_db.get_usernames()
|
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||||
df_proximity_inactive = get_proximity_data(participants_inactive_usernames)
|
df_proximity_inactive = proximity.get_proximity_data(participants_inactive_usernames)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
df_proximity_inactive.double_proximity.describe()
|
df_proximity_inactive.double_proximity.describe()
|
||||||
|
@ -110,3 +114,13 @@ df_proximity_combinations[
|
||||||
(df_proximity_combinations[5.0] != 0)
|
(df_proximity_combinations[5.0] != 0)
|
||||||
& (df_proximity_combinations[5.00030517578125] != 0)
|
& (df_proximity_combinations[5.00030517578125] != 0)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# %% [markdown]
|
||||||
|
# # Features
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_inactive = helper.get_date_from_timestamp(df_proximity_inactive)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_proximity_features = proximity.count_proximity(df_proximity_inactive, ["date_lj"])
|
||||||
|
display(df_proximity_features)
|
||||||
|
|
|
@ -78,11 +78,11 @@ def count_proximity(
|
||||||
A dataframe with the count of "near" proximity values and their relative count.
|
A dataframe with the count of "near" proximity values and their relative count.
|
||||||
"""
|
"""
|
||||||
if group_by is None:
|
if group_by is None:
|
||||||
group_by = ["participant_id"]
|
group_by = []
|
||||||
if "bool_prox_near" not in df_proximity:
|
if "bool_prox_near" not in df_proximity:
|
||||||
df_proximity = recode_proximity(df_proximity)
|
df_proximity = recode_proximity(df_proximity)
|
||||||
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]
|
df_proximity["bool_prox_far"] = ~df_proximity["bool_prox_near"]
|
||||||
df_proximity_features = df_proximity.groupby(group_by).sum()[
|
df_proximity_features = df_proximity.groupby(["participant_id"] + group_by).sum()[
|
||||||
["bool_prox_near", "bool_prox_far"]
|
["bool_prox_near", "bool_prox_far"]
|
||||||
]
|
]
|
||||||
df_proximity_features = df_proximity_features.assign(
|
df_proximity_features = df_proximity_features.assign(
|
||||||
|
|
Loading…
Reference in New Issue