[WIP] Start calculating concordance.
Note, workday and morning EMAs have not been properly dealt with, but assumed answered.communication
parent
48f9f782f7
commit
7177c8429f
|
@ -4,3 +4,4 @@ __pycache__/
|
|||
*/__pycache__/
|
||||
/exploration/*.ipynb
|
||||
/config/*.ipynb
|
||||
/statistical_analysis/*.ipynb
|
||||
|
|
|
@ -106,4 +106,7 @@ def classify_sessions_adherence(df_esm_preprocessed: pd.DataFrame) -> pd.DataFra
|
|||
|
||||
# TODO What can be done about workday EMA.
|
||||
|
||||
return sessions_grouped.count()
|
||||
df_session_counts.loc[df_session_counts.session_response.isna(), "session_response"] = "esm_finished"
|
||||
# TODO But for now, simply take all other ESMs as answered.
|
||||
|
||||
return df_session_counts
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
# ---
|
||||
# jupyter:
|
||||
# jupytext:
|
||||
# formats: ipynb,py:percent
|
||||
# text_representation:
|
||||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.11.2
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
# name: straw2analysis
|
||||
# ---
|
||||
|
||||
# %%
|
||||
import os
|
||||
import sys
|
||||
import datetime
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
|
||||
nb_dir = os.path.split(os.getcwd())[0]
|
||||
if nb_dir not in sys.path:
|
||||
sys.path.append(nb_dir)
|
||||
import participants.query_db
|
||||
from features.esm import *
|
||||
|
||||
# %%
|
||||
baseline_si = pd.read_csv('E:/STRAWbaseline/results-survey637813.csv')
|
||||
baseline_be_1 = pd.read_csv('E:/STRAWbaseline/results-survey358134.csv')
|
||||
baseline_be_2 = pd.read_csv('E:/STRAWbaseline/results-survey413767.csv')
|
||||
baseline = pd.concat([baseline_si, baseline_be_1, baseline_be_2], join="inner").reset_index().drop(columns="index")
|
||||
|
||||
# %%
|
||||
participants_inactive_usernames = participants.query_db.get_usernames(collection_start=datetime.date.fromisoformat("2020-08-01"))
|
||||
|
||||
# %%
|
||||
baseline_inactive = baseline[baseline["Gebruikersnaam"].isin(participants_inactive_usernames)]
|
||||
|
||||
# %%
|
||||
df_esm_inactive = get_esm_data(participants_inactive_usernames)
|
||||
df_esm_preprocessed = preprocess_esm(df_esm_inactive)
|
||||
|
Loading…
Reference in New Issue