[WIP] Start calculating concordance.
Note, workday and morning EMAs have not been properly dealt with, but assumed answered.communication
parent
48f9f782f7
commit
7177c8429f
|
@ -4,3 +4,4 @@ __pycache__/
|
||||||
*/__pycache__/
|
*/__pycache__/
|
||||||
/exploration/*.ipynb
|
/exploration/*.ipynb
|
||||||
/config/*.ipynb
|
/config/*.ipynb
|
||||||
|
/statistical_analysis/*.ipynb
|
||||||
|
|
|
@ -106,4 +106,7 @@ def classify_sessions_adherence(df_esm_preprocessed: pd.DataFrame) -> pd.DataFra
|
||||||
|
|
||||||
# TODO What can be done about workday EMA.
|
# TODO What can be done about workday EMA.
|
||||||
|
|
||||||
return sessions_grouped.count()
|
df_session_counts.loc[df_session_counts.session_response.isna(), "session_response"] = "esm_finished"
|
||||||
|
# TODO But for now, simply take all other ESMs as answered.
|
||||||
|
|
||||||
|
return df_session_counts
|
||||||
|
|
|
@ -0,0 +1,44 @@
|
||||||
|
# ---
|
||||||
|
# jupyter:
|
||||||
|
# jupytext:
|
||||||
|
# formats: ipynb,py:percent
|
||||||
|
# text_representation:
|
||||||
|
# extension: .py
|
||||||
|
# format_name: percent
|
||||||
|
# format_version: '1.3'
|
||||||
|
# jupytext_version: 1.11.2
|
||||||
|
# kernelspec:
|
||||||
|
# display_name: straw2analysis
|
||||||
|
# language: python
|
||||||
|
# name: straw2analysis
|
||||||
|
# ---
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import datetime
|
||||||
|
import seaborn as sns
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
nb_dir = os.path.split(os.getcwd())[0]
|
||||||
|
if nb_dir not in sys.path:
|
||||||
|
sys.path.append(nb_dir)
|
||||||
|
import participants.query_db
|
||||||
|
from features.esm import *
|
||||||
|
|
||||||
|
# %%
|
||||||
|
baseline_si = pd.read_csv('E:/STRAWbaseline/results-survey637813.csv')
|
||||||
|
baseline_be_1 = pd.read_csv('E:/STRAWbaseline/results-survey358134.csv')
|
||||||
|
baseline_be_2 = pd.read_csv('E:/STRAWbaseline/results-survey413767.csv')
|
||||||
|
baseline = pd.concat([baseline_si, baseline_be_1, baseline_be_2], join="inner").reset_index().drop(columns="index")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
participants_inactive_usernames = participants.query_db.get_usernames(collection_start=datetime.date.fromisoformat("2020-08-01"))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
baseline_inactive = baseline[baseline["Gebruikersnaam"].isin(participants_inactive_usernames)]
|
||||||
|
|
||||||
|
# %%
|
||||||
|
df_esm_inactive = get_esm_data(participants_inactive_usernames)
|
||||||
|
df_esm_preprocessed = preprocess_esm(df_esm_inactive)
|
||||||
|
|
Loading…
Reference in New Issue