Add Seaborn and cleanup.
parent
e6d129c6ee
commit
66b36faedc
|
@ -1,2 +1,4 @@
|
|||
/.env
|
||||
*/.ipynb_checkpoints/
|
||||
__pycache__/
|
||||
*/__pycache__/
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/config/.ipynb_checkpoints" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/exploration/.ipynb_checkpoints" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.9 (straw2analysis)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
|
|
|
@ -12,4 +12,5 @@ dependencies:
|
|||
- pandas
|
||||
- psycopg2
|
||||
- python-dotenv
|
||||
- seaborn
|
||||
- sqlalchemy
|
|
@ -5,6 +5,15 @@
|
|||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import seaborn as sns"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os, sys\n",
|
||||
"nb_dir = os.path.split(os.getcwd())[0]\n",
|
||||
|
@ -14,16 +23,23 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from features.communication import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Example of feature calculation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -72,7 +88,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -134,7 +150,7 @@
|
|||
"21 0 "
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
@ -145,8 +161,10 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
|
@ -194,7 +212,7 @@
|
|||
"21 16 2"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
|
|
@ -100,7 +100,10 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
|||
-------
|
||||
comm_features: pd.DataFrame
|
||||
A list of communication features for every participant.
|
||||
|
||||
These are:
|
||||
* the number of messages by type (received, sent),
|
||||
* the number of calls by type (incoming, outgoing missed), and
|
||||
* the duration of calls by type.
|
||||
"""
|
||||
if "call_type" in comm_df:
|
||||
comm_counts = (
|
||||
|
|
|
@ -24,4 +24,4 @@ def get_usernames(
|
|||
)
|
||||
with db_engine.connect() as connection:
|
||||
df_participants = pd.read_sql(query_participant_usernames.statement, connection)
|
||||
return df_participants
|
||||
return df_participants.values.flatten()
|
||||
|
|
Loading…
Reference in New Issue