Communication
parent
40293c4752
commit
62af04fe09
|
@ -6,7 +6,7 @@
|
|||
# extension: .py
|
||||
# format_name: percent
|
||||
# format_version: '1.3'
|
||||
# jupytext_version: 1.11.2
|
||||
# jupytext_version: 1.11.4
|
||||
# kernelspec:
|
||||
# display_name: straw2analysis
|
||||
# language: python
|
||||
|
@ -14,6 +14,7 @@
|
|||
# ---
|
||||
|
||||
# %%
|
||||
# %matplotlib inline
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
@ -53,6 +54,15 @@ import participants.query_db
|
|||
participants_inactive_usernames = participants.query_db.get_usernames()
|
||||
df_calls_inactive = get_call_data(participants_inactive_usernames)
|
||||
|
||||
# %%
|
||||
participants_inactive_usernames
|
||||
|
||||
# %%
|
||||
df_calls_inactive.head()
|
||||
|
||||
# %%
|
||||
enumerate_contacts(df_calls_inactive).head()
|
||||
|
||||
# %%
|
||||
df_calls_features = count_comms(df_calls_inactive)
|
||||
df_calls_features.head()
|
||||
|
@ -70,6 +80,9 @@ calls_number = pd.wide_to_long(
|
|||
suffix="\D+",
|
||||
)
|
||||
|
||||
# %%
|
||||
calls_number
|
||||
|
||||
# %%
|
||||
sns.displot(calls_number, x="no", hue="call_type", binwidth=5, element="step", height=8)
|
||||
|
||||
|
@ -126,3 +139,30 @@ sms_number = pd.wide_to_long(
|
|||
sns.displot(
|
||||
sms_number, x="no", hue="message_type", binwidth=5, element="step", height=8
|
||||
)
|
||||
|
||||
# %% [markdown]
|
||||
# # Communication features
|
||||
|
||||
# %%
|
||||
df_calls_enumerated = enumerate_contacts(df_calls)
|
||||
display(df_calls_enumerated)
|
||||
|
||||
# %%
|
||||
df_calls_contact_features = contact_features(df_calls_enumerated)
|
||||
display(df_calls_contact_features)
|
||||
|
||||
# %%
|
||||
df_sms_enumerated = enumerate_contacts(df_sms)
|
||||
df_sms_contact_features = contact_features(df_sms_enumerated)
|
||||
display(df_sms_contact_features)
|
||||
|
||||
# %%
|
||||
display(count_comms(df_calls))
|
||||
|
||||
# %%
|
||||
display(count_comms(df_sms))
|
||||
|
||||
# %%
|
||||
display(calls_sms_features(df_calls, df_sms))
|
||||
|
||||
# %%
|
||||
|
|
|
@ -86,7 +86,8 @@ def enumerate_contacts(comm_df: pd.DataFrame) -> pd.DataFrame:
|
|||
# In other words, recode the contacts into integers from 0 to n_contacts,
|
||||
# so that the first one is contacted the most often.
|
||||
contact_ids = (
|
||||
contact_counts.groupby("participant_id") # Group again for enumeration.
|
||||
# Group again for enumeration.
|
||||
contact_counts.groupby("participant_id")
|
||||
.cumcount() # Enumerate (count) rows *within* participants.
|
||||
.to_frame("contact_id")
|
||||
)
|
||||
|
@ -150,8 +151,10 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
|||
comm_features = comm_counts.join(comm_duration_total)
|
||||
comm_features = comm_features.join(comm_duration_max)
|
||||
try:
|
||||
comm_features.drop(columns="duration_total_" + call_types[3], inplace=True)
|
||||
comm_features.drop(columns="duration_max_" + call_types[3], inplace=True)
|
||||
comm_features.drop(columns="duration_total_" +
|
||||
call_types[3], inplace=True)
|
||||
comm_features.drop(columns="duration_max_" +
|
||||
call_types[3], inplace=True)
|
||||
# The missed calls are always of 0 duration.
|
||||
except KeyError:
|
||||
pass
|
||||
|
@ -172,19 +175,145 @@ def count_comms(comm_df: pd.DataFrame) -> pd.DataFrame:
|
|||
)
|
||||
# Ratio of incoming and outgoing messages to all messages.
|
||||
else:
|
||||
raise KeyError("The dataframe contains neither call_type or message_type")
|
||||
raise KeyError(
|
||||
"The dataframe contains neither call_type or message_type")
|
||||
return comm_features
|
||||
|
||||
|
||||
def contact_features():
|
||||
# TODO Implement a method that takes a DF with enumerated contacts as argument and calculates:
|
||||
# * Duration of calls per caller (for most common callers)
|
||||
# * Determine work vs non-work contacts by work hours heuristics
|
||||
# * Number of people contacted
|
||||
# And similarly for SMS.
|
||||
pass
|
||||
def contact_features(df_enumerated: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Counts the number of people contacted (for each participant) and, if
|
||||
df_enumerated is a dataframe containing calls data, the total duration
|
||||
of calls between a participant and each of her contacts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_enumerated: pd.DataFrame
|
||||
A dataframe of calls or SMSes; return of function enumerate_contacts.
|
||||
|
||||
Returns
|
||||
-------
|
||||
comm_df: pd.DataFrame
|
||||
The altered dataframe with the column no_contacts and, if df_enumerated
|
||||
contains calls data, an additional column total_call_duration.
|
||||
"""
|
||||
|
||||
# Check whether df contains calls or SMS data since some
|
||||
# features we want to calculate are type-specyfic
|
||||
if "call_duration" in df_enumerated:
|
||||
# Add a column with the total duration of calls between two people
|
||||
duration_count = (
|
||||
df_enumerated.groupby(
|
||||
["participant_id", "contact_id"]
|
||||
)
|
||||
# For each participant and for each caller, sum durations of their calls
|
||||
["call_duration"].sum()
|
||||
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||
.rename(columns={"call_duration": "total_call_duration"})
|
||||
)
|
||||
# The new dataframe now contains columns containing information about
|
||||
# participants, callers and the total duration of their calls. All that
|
||||
# is now left to do is to merge the original df with the new one.
|
||||
df_enumerated = df_enumerated.merge(
|
||||
duration_count,
|
||||
on=["participant_id", "contact_id"]
|
||||
)
|
||||
|
||||
contact_count = (
|
||||
df_enumerated.groupby(["participant_id"])
|
||||
.nunique()["contact_id"] # For each participant, count the number of distinct contacts
|
||||
.reset_index() # Make index (which is actually the participant id) a normal column
|
||||
.rename(columns={"contact_id": "no_contacts"})
|
||||
)
|
||||
|
||||
df_enumerated = (
|
||||
# Merge df with the newely created df containing info about number of contacts
|
||||
df_enumerated.merge(contact_count, on="participant_id")
|
||||
# Sort first by participant_id and then by contact_id and
|
||||
# thereby restore the inital ordering of input dataframes.
|
||||
.sort_values(["participant_id", "contact_id"])
|
||||
)
|
||||
|
||||
# TODO:Determine work vs non-work contacts by work hours heuristics
|
||||
|
||||
return df_enumerated
|
||||
|
||||
|
||||
def calls_sms_features():
|
||||
# TODO Relate the calls and sms data, such as comparing the number of (missed) calls and messages.
|
||||
pass
|
||||
def calls_sms_features(df_calls: pd.DataFrame, df_sms: pd.DataFrame) -> pd.DataFrame:
|
||||
"""
|
||||
Calculates additional features relating calls and sms data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df_calls: pd.DataFrame
|
||||
A dataframe of calls (return of get_call_data).
|
||||
df_sms: pd.DataFrame
|
||||
A dataframe of calls (return of get_sms_data).
|
||||
|
||||
Returns
|
||||
-------
|
||||
df_calls_sms: pd.DataFrame
|
||||
The list of features relating calls and sms data for every participant.
|
||||
These are:
|
||||
* no_calls_no_sms_ratio:
|
||||
proportion of calls in total number of communications
|
||||
* no_incoming_calls_no_recieved_sms_ratio:
|
||||
proportion of incoming calls in total number of incoming/recieved communications
|
||||
* no_outgoing_calls_no_sent_sms_ratio:
|
||||
proportion of outgoing calls in total number of outgoing/sent communications
|
||||
* no_calls_contacts_no_sms_contacts_ratio:
|
||||
proportion of calls contacts in total number of communication contacts
|
||||
"""
|
||||
|
||||
count_calls = count_comms(df_calls)
|
||||
count_sms = count_comms(df_sms)
|
||||
|
||||
count_joined = (
|
||||
count_calls.merge(
|
||||
count_sms, on="participant_id", suffixes=("_calls", "_sms")
|
||||
) # Merge calls and sms features
|
||||
.reset_index() # Make participant_id a regular column
|
||||
.assign(
|
||||
no_calls_no_sms_ratio=(
|
||||
lambda x: x.no_all_calls / (x.no_all_calls + x.no_all_sms)
|
||||
),
|
||||
no_incoming_calls_no_recieved_sms_ratio=(
|
||||
lambda x: x.no_received / (x.no_incoming + x.no_received)
|
||||
),
|
||||
no_outgoing_calls_no_sent_sms_ratio=(
|
||||
lambda x: x.no_outgoing / (x.no_outgoing + x.no_sent)
|
||||
) # Calculate new features and create additional columns
|
||||
)[
|
||||
["participant_id",
|
||||
"no_calls_no_sms_ratio",
|
||||
"no_incoming_calls_no_recieved_sms_ratio",
|
||||
"no_outgoing_calls_no_sent_sms_ratio"]
|
||||
] # Filter out only the relevant feautres
|
||||
)
|
||||
|
||||
features_calls = contact_features(enumerate_contacts(df_calls))
|
||||
features_sms = contact_features(enumerate_contacts(df_sms))
|
||||
|
||||
features_joined = (
|
||||
features_calls.merge(
|
||||
features_sms, on="participant_id", suffixes=("_calls", "_sms")
|
||||
) # Merge calls and sms features
|
||||
.reset_index() # Make participand_id a regular column
|
||||
.assign(
|
||||
no_calls_contacts_no_sms_contacts_ratio=(
|
||||
lambda x: x.no_contacts_calls /
|
||||
(x.no_contacts_calls + x.no_contacts_sms)
|
||||
) # Calculate new features and create additional columns
|
||||
)[
|
||||
["participant_id",
|
||||
"no_calls_contacts_no_sms_contacts_ratio"]
|
||||
] # Filter out only the relevant feautres
|
||||
# Since we are interested only in some features and ignored
|
||||
# others, a lot of duplicate rows were created. Remove them.
|
||||
.drop_duplicates()
|
||||
)
|
||||
|
||||
# Join the newely created dataframes
|
||||
df_calls_sms = count_joined.merge(features_joined, on="participant_id")
|
||||
|
||||
return df_calls_sms
|
||||
|
|
Loading…
Reference in New Issue